Spectral smearing causes, at least partially, that cochlear implant (CI) users require a higher signal-to-noise ratio to obtain the same speech intelligibility as normal hearing listeners. A spectral contrast enhancement (SCE) algorithm has been designed and evaluated as an additional feature for a standard CI strategy. The algorithm keeps the most prominent peaks within a speech signal constant while attenuating valleys in the spectrum. The goal is to partly compensate for the spectral smearing produced by the limited number of stimulation electrodes and the overlap of electrical fields produced in CIs. Twelve CI users were tested for their speech reception threshold (SRT) using the standard CI coding strategy with and without SCE. No significant differences in SRT were observed between conditions. However, an analysis of the electrical stimulation patterns shows a reduction in stimulation current when using SCE. In a second evaluation, 12 CI users were tested in a similar configuration of the SCE strategy with the stimulation being balanced between the SCE and the non-SCE variants such that the loudness perception delivered by the strategies was the same. Results show a significant improvement in SRT of 0.57 dB (p < 0.0005) for the SCE algorithm.

1.
Alexander
,
J. M.
,
Jenison
,
R. L.
, and
Kluender
,
K. R.
(
2011
). “
Real-time contrast enhancement to improve speech recognition
,”
PloS One
6
(
9
),
e24630
.
2.
Baer
,
T.
,
Moore
,
B. C.
, and
Gatehouse
,
S.
(
1993
). “
Spectral contrast enhancement of speech in noise for listeners with sensorineural hearing impairment: Effects on intelligibility, quality, and response times
,”
J. Rehabil. Res. Dev.
30
(
1
),
49
72
.
3.
Bhattacharya
,
A.
,
Vandali
,
A.
, and
Zeng
,
F.-G.
(
2011
). “
Combined spectral and temporal enhancement to improve cochlear-implant speech perception
,”
J. Acoust. Soc. Am.
130
(
5
),
2951
2960
.
4.
Bhattacharya
,
A.
, and
Zeng
,
F.-G.
(
2007
). “
Companding to improve cochlear-implant speech recognition in speech-shaped noise
,”
J. Acoust. Soc. Am.
122
(
2
),
1079
1089
.
5.
Boyle
,
P. J.
,
Büchner
,
A.
,
Stone
,
M. A.
,
Lenarz
,
T.
, and
Moore
,
B. C. J.
(
2009
). “
Comparison of dual-time-constant and fast-acting automatic gain control (AGC) systems in cochlear implants
,”
Int. J. Audiol.
48
(
4
),
211
221
.
6.
Bozorg-Grayeli
,
A.
,
Guevara
,
N.
,
Bebear
,
J.-P.
,
Ardoint
,
M.
,
Saaï
,
S.
,
Hoen
,
M.
,
Gnansia
,
D.
,
Romanet
,
P.
, and
Lavieille
,
J.-P.
(
2015
). “
Clinical evaluation of the xDP output compression strategy for cochlear implants
,”
Eur. Arch. Otorhinolaryngol.
(in press).
7.
Büchner
,
A.
,
Nogueira
,
W.
,
Edler
,
B.
,
Battmer
,
R.-D.
, and
Lenarz
,
T.
(
2008
). “
Results from a psychoacoustic model-based strategy for the Nucleus-24 and Freedom cochlear implants
,”
Otol. Neurotol.
29
(
2
),
189
192
.
8.
Buechner
,
A.
,
Dyballa
,
K.-H.
,
Hehrmann
,
P.
,
Fredelake
,
S.
, and
Lenarz
,
T.
(
2014
). “
Advanced beamformers for cochlear implant users: Acute measurement of speech perception in challenging listening conditions
,”
PloS One
9
(
4
),
e95542
.
9.
Chatterjee
,
M.
, and
Shannon
,
R. V.
(
1998
). “
Forward masked excitation patterns in multielectrode electrical stimulation
,”
J. Acoust. Soc. Am.
,
103
(
5
),
2565
2572
.
10.
Chen
,
J.
,
Baer
,
T.
, and
Moore
,
B.
(
2013
). “
Effect of spectral change enhancement for the hearing impaired using parameter values selected with a genetic algorithm
,”
J. Acoust. Soc. Am.
133
(
5
),
2910
2920
.
11.
Chen
,
J.
,
Baer
,
T.
, and
Moore
,
B. C. J.
(
2012
). “
Effect of enhancement of spectral changes on speech intelligibility and clarity preferences for the hearing impaired
,”
J. Acoust. Soc. Am.
131
(
4
),
2987
2998
.
12.
Chistovich
,
L. A.
, and
Lublinskaya
,
V. V.
(
1979
). “
The ‘center of gravity’ effect in vowel spectra and critical distance between the formants: Psychoacoustical study of the perception of vowel-like stimuli
,”
Hear. Res.
1
(
3
),
185
195
.
13.
Cohen
,
L. T.
(
2009
). “
Practical model description of peripheral neural excitation in cochlear implant recipients: 4. Model development at low pulse rates: General model and application to individuals
,”
Hear. Res.
248
(
1–2
),
15
30
.
14.
Cohen
,
L. T.
,
Richardson
,
L. M.
,
Saunders
,
E.
, and
Cowan
,
R. S. C.
(
2003
). “
Spatial spread of neural excitation in cochlear implant recipients: Comparison of improved ECAP method and psychophysical forward masking
,”
Hear. Res.
179
,
72
87
.
15.
Dawson
,
P. W.
,
Mauger
,
S. J.
, and
Hersbach
,
A. A.
(
2011
). “
Clinical evaluation of signal-to-noise ratio-based noise reduction in Nucleus® cochlear implant recipients
,”
Ear Hear.
32
,
382
390
.
16.
Dorman
,
M. F.
,
Loizou
,
P. C.
, and
Fitzke
,
F.
(
1998
). “
The identification of speech in noise by cochlear implant patients and normal-hearing listeners using 6-channel signal processors
,”
Ear Hear.
19
(
6
),
481
484
.
17.
Finley
,
C. C.
,
Holden
,
T. A.
,
Holden
,
L. K.
,
Whiting
,
B. R.
,
Chole
,
R. A.
,
Neely
,
G. J.
,
Hullar
,
T. E.
, and
Skinner
,
M. W.
(
2008
). “
Role of electrode placement as a contributor to variability in cochlear implant outcomes
,”
Otol. Neurotol.
29
(
7
),
920
928
.
18.
Firszt
,
J. B.
,
Holden
,
L. K.
,
Skinner
,
M. W.
,
Tobey
,
E. A.
,
Peterson
,
A.
,
Gaggl
,
W.
,
Runge-Samuelson
C. L.
, and
Wackym
,
P. A.
(
2004
). “
Recognition of speech presented at soft to loud levels by adult cochlear implant recipients of three cochlear implant systems
,”
Ear Hear.
25
,
375
387
.
19.
Friesen
,
L. M.
,
Shannon
,
R. V.
,
Baskent
,
D.
, and
Wang
,
X.
(
2001
). “
Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants
,”
J. Acoust. Soc. Am.
110
(
2
),
1150
1163
.
20.
Fu
,
Q. J.
(
2002
). “
Temporal processing and speech recognition in cochlear implant users
,”
Neuroreport.
13
,
1635
1640
.
21.
Goorevich
,
M.
, and
Batty
,
M.
(
2005
). “
A new real-time research platform for the Nucleus® and Nucleus® Freedom™ cochlear implants
,” in
CIAP 2005
, poster presentation.
21.
Green
,
T.
,
Faulkner
,
A.
, and
Rosen
,
S.
(
2012
). “
Variations in carrier pulse rate and the perception of amplitude modulation in cochlear implant users
,”
Ear Hear.
33
(
2
),
221
230
.
22.
Harczos
,
T.
,
Chilian
,
A.
, and
Husar
,
P.
(
2013
). “
Making use of auditory models for better mimicking of normal hearing processes with cochlear implants: The SAM coding strategy
,”
IEEE Trans. Biomed. Circuits Syst.
7
(
4
),
414
425
.
23.
Hey
,
M.
,
Hocke
,
T.
,
Hedderich
,
J.
, and
Müller-Deile
,
J.
(
2014
). “
Investigation of a matrix sentence test in noise: Reproducibility and discrimination function in cochlear implant patients
,”
Int. J. Audiol.
53
(
12
),
895
902
.
24.
Hochberg
,
I.
,
Boothroyd
,
A.
,
Weiss
,
M.
, and
Hellman
,
S.
(
1992
). “
Effects of noise and noise suppression on speech perception by cochlear implant users
,”
Ear Hear.
13
(
4
),
263
71
.
25.
Hu
,
Y.
,
Loizou
,
P. C.
,
Li
,
N.
, and
Kasturi
,
K.
(
2007
). “
Use of a sigmoidal-shaped function for noise attenuation in cochlear implants
,”
J. Acoust. Soc. Am.
122
(
4
),
EL128
EL134
.
26.
IEEE Subcommittee on Subjective Measurements.
(
1969
). “
IEEE recommended practices for speech quality measurements
,”
IEEE Trans. Audio Electroacoust.
17
,
227
246
.
27.
James
,
C. J.
,
Blamey
,
P. J.
,
Martin
,
L.
,
Swanson
,
B.
,
Just
,
Y.
, and
Macfarlane
,
D.
(
2002
). “
Adaptive dynamic range optimization for cochlear implants: A preliminary study
,”
Ear Hear.
23
(
1
),
49S
58S
.
28.
Jorgensen
,
S.
, and
Dau
,
T.
(
2011
). “
Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing
,”
J. Acoust. Soc. Am.
130
(
3
),
1475
1487
.
29.
Khing
,
P. P.
,
Swanson
,
B. A.
, and
Ambikairajah
,
E.
(
2013
). “
The effect of automatic gain control structure and release time on cochlear implant speech intelligibility
,”
PLoS One
8
(
11
),
e82263
.
30.
Kluender
,
K. R.
,
Coady
,
J. A.
, and
Kiefte
,
M.
(
2003
). “
Sensitivity to change in perception of speech
,”
Speech Commun.
41
(
1
),
59
69
.
31.
Kollmeier
,
B.
, and
Wesselkamp
,
M.
(
1997
). “
Development and evaluation of a German sentence test for objective and subjective speech intelligibility assessment
,”
J. Acoust. Soc. Am.
102
(
4
),
2412
2421
.
32.
Litvak
,
L. M.
,
Spahr
,
A. J.
,
Saoji
,
A. A.
, and
Fridman
,
G. Y.
(
2007
). “
Relationship between perception of spectral ripple and speech recognition in cochlear implant and vocoder listeners
,”
J. Acoust. Soc. Am.
122
(
2
),
982
991
.
33.
Loizou
,
P. C.
,
Dorman
,
M. F.
,
Tu
,
Z.
, and
Fitzke
,
J.
(
2000
). “
Recognition of sentences in noise by normal-hearing listeners using simulations of speak-type cochlear implant signal processors
,”
Ann. Otol. Rhinol. Laryngol. Suppl.
185
,
67
68
.
34.
Loizou
,
P. C.
, and
Poroy
,
O.
(
2001
). “
Minimum spectral contrast needed for vowel identification by normal hearing and cochlear implant listeners
,”
J. Acoust. Soc. Am.
110
(
3
),
1619
1627
.
35.
Long
,
C. J.
,
Holden
,
T. A.
,
McClelland
,
G. H.
,
Parkinson
,
W. S.
,
Shelton
,
C.
,
Kelsall
,
D. C.
, and
Smith
,
Z. M.
(
2014
). “
Examining the electro-neural interface of cochlear implant users using psychophysics, CT scans, and speech understanding
,”
J. Assoc. Res. Otolaryngol.
15
(
2
),
293
304
.
36.
Mauger
,
S. J.
,
Dawson
,
P. W.
, and
Hersbach
,
A. A.
(
2012
). “
Perceptually optimized gain function for cochlear implant signal-to-noise ratio based noise reduction
,”
J. Acoust. Soc. Am.
131
,
327
336
.
37.
Meddis
,
R.
,
O'Mard
,
L. P.
, and
Lopez-Poveda
,
E. A.
(
2001
). “
A computational algorithm for computing nonlinear auditory frequency selectivity
,”
J. Acoust. Soc. Am.
109
(
6
),
2852
2861
.
38.
Moore
,
B. C. J.
(
2003
). “
Speech processing for the hearing-impaired: Successes, failures, and implications for speech mechanisms
,”
Speech Commun.
41
,
81
91
.
39.
Nelson
,
D. A.
,
Schmitz
,
J. L.
,
Donaldson
,
G. S.
,
Viemeister
,
N. F.
, and
Javel
,
E.
(
1996
). “
Intensity discrimination as a function of stimulus level with electric stimulation
,”
J. Acoust. Soc. Am.
100
(
4
),
2393
2414
.
40.
Nogueira
,
W.
,
Büchner
,
A.
,
Lenarz
,
T.
, and
Edler
,
B.
(
2005
). “
A psychoacoustic ‘NofM’-type speech coding strategy for cochlear implants
,”
EURASIP J. Appl. Signal Process.
2005
(
18
),
3044
3059
.
41.
Nogueira
,
W.
,
Kátai
,
A.
,
Harczos
,
T.
,
Klefenz
,
F.
,
Buechner
,
A.
, and
Edler
,
B.
(
2007
). “
An auditory model based strategy for cochlear implants
,”
Conf. Proc. IEEE Eng. Med. Biol. Soc.
2007
,
4127
4130
.
42.
Nogueira
,
W.
,
Lopez
,
M.
,
Rode
,
T.
,
Doclo
,
S.
, and
Buechner
,
A.
(
2015
). “
Individualizing a monaural beamformer for cochlear implant users
,” in
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, April 19–24, pp.
5738
5742
.
43.
Oxenham
,
A. J.
,
Simonson
,
A. M.
,
Turicchia
,
L.
, and
Sarpeshkar
,
R.
(
2007
). “
Evaluation of companding-based spectral enhancement using simulated cochlear-implant processing
,”
J. Acoust. Soc. Am.
121
(
3
),
1709
1716
.
44.
Rhebergen
,
K. S.
,
Versfeld
,
N. J.
, and
Dreschler
,
W. A.
(
2006
). “
Extended speech intelligibility index for the prediction of the speech reception threshold in fluctuating noise
,”
J. Acoust. Soc. Am.
120
(
6
),
3988
3997
.
45.
Sagi
,
E.
,
Meyer
,
T. A.
,
Kaiser
,
A. R.
,
Teoh
,
S. W.
, and
Svirsky
,
M. A.
(
2010
). “
A mathematical model of vowel identification by users of cochlear implants
,”
J. Acoust. Soc. Am.
127
(
2
),
1069
1083
.
46.
Sarampalis
,
A.
,
Kalluri
,
S.
,
Edwards
,
B.
, and
Hafter
,
E.
(
2009
). “
Objective measures of listening effort: Effects of background noise and noise reduction
,”
J. Speech, Lang. Hear. Res.
52
(
5
),
1230
1240
.
47.
Stickney
,
G. S.
,
Zeng
,
F. G.
,
Litovsky
,
R.
, and
Assmann
,
P.
(
2004
). “
Cochlear implant speech recognition with speech maskers
,”
J. Acoust. Soc. Am.
116
(
2
),
1081
1091
.
48.
Turicchia
,
L.
, and
Sarpeshkar
,
R.
(
2005
). “
A bio-inspired companding strategy for spectral enhancement
,”
IEEE Trans. Speech Audio Process.
13
(
2
),
243
253
.
You do not currently have access to this content.