In the biosonar systems of bats, emitted acoustic energy and receiver sensitivity are distributed over direction and frequency through beampattern functions that have diverse and often complicated geometries. This complexity could be used by the animals to determine the direction of incoming sounds based on spectral signatures. The present study has investigated how well bat biosonar beampatterns are suited for direction finding using a measure of the smallest estimator variance that is possible for a given direction [Cramér-Rao lower bound (CRLB)]. CRLB values were estimated for numerical beampattern estimates derived from 330 individual shape samples, 157 noseleaves (used for emission), and 173 outer ears (pinnae). At an assumed 60 dB signal-to-noise ratio, the average value of the CRLB was 3.9°, which is similar to previous behavioral findings. Distribution for the CRLBs in individual beampatterns had a positive skew indicating the existence of regions where a given beampattern does not support a high accuracy. The highest supported accuracies were for direction finding in elevation (with the exception of phyllostomid emission patterns). No large, obvious differences in the CRLB (greater 2° in the mean) were found between the investigated major taxonomic groups, suggesting that different bat species have access to similar direction-finding information.

1.
R.
Müller
, “
Numerical analysis of biosonar beamforming mechanisms and strategies in bats
,”
J. Acoust. Soc. Am.
128
,
1414
1425
(
2010
).
2.
M. A.
Obrist
,
M. B.
Fenton
,
J. L.
Eger
, and
P. A.
Schlegel
, “
What ears do for bats: A comparative study of pinna sound pressure transformation in chiroptera
,”
J. Exp. Biol.
180
,
119
152
(
1993
).
3.
L.
Jakobsen
,
S.
Brinkløv
, and
A.
Surlykke
, “
Intensity and directionality of bat echolocation signals
,”
Front. Physiol.
4
,
1
9
(
2013
).
4.
M.
Aytekin
,
E.
Grassi
,
M.
Sahota
, and
C. F.
Moss
, “
The bat head-related transfer function reveals binaural cues for sound localization in azimuth and elevation
,”
J. Acoust. Soc. Am.
116
(
6
),
3594
3605
(
2004
).
5.
D. J.
Hartley
and
R. A.
Suthers
, “
The sound emission pattern of the echolocating bat, Eptesicus fuscus
,”
J. Acoust. Soc. Am.
85
(
3
),
1348
1351
(
1989
).
6.
U.
Firzlaff
and
G.
Schuller
, “
Spectral directionality of the external ear of the lesser spear-nosed bat, Phyllostomus discolor
,”
Hearing Res.
181
(
1
),
27
39
(
2003
).
7.
U.
Firzlaff
and
G.
Schuller
, “
Directionality of hearing in two CF/FM bats, Pteronotus parnellii and Rhinolophus rouxi
,”
Hear. Res.
197
(
1–2
),
74
86
(
2004
).
8.
A. D.
Grinnell
and
H.-U.
Schnitzler
, “
Directional sensitivity of echolocation in the horseshoe bat Rhinolophus ferrumequinum. II. Behavioral directionality of hearing
,”
J. Comp. Physiol. A
116
,
63
76
(
1977
).
9.
H.-U.
Schnitzler
and
A. D.
Grinnell
, “
Directional sensitivity of echolocation in the horseshoe bat, Rhinolophus ferrumequinum. I. Directionality of sound emission
,”
J. Comp. Physiol. A
116
,
51
61
(
1977
).
10.
J. M.
Wotton
,
T.
Haresign
, and
J. A.
Simmons
, “
Spatially dependent acoustic cues generated by the external ear of the big brown bat, Eptesicus fuscus
,”
J. Acoust. Soc. Am.
98
,
1423
1445
(
1995
).
11.
A. K.
Gupta
,
D.
Webster
, and
R.
Müller
, “
Interplay of furrows and shape dynamics in the lancet of the horseshoe bat noseleaf
,”
J. Acoust. Soc. Am.
138
(
5
),
3188
3194
(
2015
).
12.
W.
He
,
A. K.
Gupta
,
S.
Pedersen
,
J. A.
Simmons
, and
R.
Müller
, “
Lancet dynamics in greater horseshoe bats, Rhinolophus ferrumequinum
,”
PLoS One
10
(
4
),
e0121700
(
2015
).
13.
F.
De Mey
,
J.
Reijniers
,
H.
Peremans
,
M.
Otani
, and
U.
Firzlaff
, “
Simulated head related transfer function of the phyllostomid bat Phyllostomus discolor
,”
J. Acoust. Soc. Am.
124
(
4
),
2123
2132
(
2008
).
14.
R.
Müller
, “
A numerical study of the role of the tragus in the big brown bat
,”
J. Acoust. Soc. Am.
116
(
6
),
3701
3712
(
2004
).
15.
R.
Müller
,
H.
Lu
, and
J. R.
Buck
, “
Sound-diffracting flap in the ear of a bat generates spatial information
,”
Phys. Rev. Lett.
100
,
108701
(
2008
).
16.
R.
Müller
,
H.
Lu
,
S.
Zhang
, and
H.
Peremans
, “
A helical biosonar scanning pattern in the Chinese noctule, Nyctalus plancyi
,”
J. Acoust. Soc. Am.
119
(
6
),
4083
4092
(
2006
).
17.
J.
Reijniers
,
D.
Vanderelst
, and
H.
Peremans
, “
Morphology-induced information transfer in bat sonar
,”
Phys. Rev. Lett.
105
(
14
),
148701
(
2010
).
18.
D.
Vanderelst
,
J.
Reijniers
, and
H.
Peremans
, “
The furrows of rhinolophidae revisited
,”
J. R. Soc. Interface
9
(
70
),
1100
1103
(
2012
).
19.
X.
Wang
and
R.
Müller
, “
Pinna-rim skin folds narrow the sonar beam in the lesser false vampire bat (Megaderma spasma)
,”
J. Acoust. Soc. Am.
126
,
3311
3318
(
2009
).
20.
Z.
Zhang
,
S. T.
Nguyen
, and
R.
Müller
, “
Acoustic effects accurately predict an extreme case of biological morphology
,”
Phys. Rev. Lett.
103
(
3
),
038701
(
2009
).
21.
Q.
Zhuang
and
R.
Müller
, “
Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam
,”
Phys. Rev. Lett.
97
(
21
),
218701
(
2006
).
22.
Q.
Zhuango
and
R.
Müller
, “
Numerical study of the effect of the noseleaf on biosonar beamforming in a horseshoe bat
,”
Phys. Rev. E
76
,
051902
(
2007
).
23.
M.
Motamedi
and
R.
Müller
, “
Characterization of the biodiversity in bat biosonar beampatterns with spherical harmonics
,”
J. Acoust. Soc. Am.
135
(
6
),
3613
3619
(
2014
).
24.
P.
Caspers
and
R.
Müller
, “
Eigenbeam analysis of the diversity in bat biosonar beampatterns
,”
J. Acoust. Soc. Am.
137
(
3
),
1081
1087
(
2015
).
25.
D.
Dreyer
and
O.
von Estorff
, “
Improved conditioning of infinite elements for exterior acoustics
,”
Int. J. Numer. Meth. Eng.
58
(
6
),
933
953
(
2003
).
26.
D. E.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
New York
,
1999
).
27.
O. M.
Ramahi
, “
Near- and far-field calculations in FDTD simulations using Kirchhoff surface integral representation
,”
IEEE Trans. Ant. Propag.
45
(
5
),
753
759
(
1997
).
28.
S. M.
Kay
,
Estimation Theory, Vol. I of Fundamentals of Statistical Signal Processing
(
Prentice Hall
,
Upper Saddle River, NJ
,
1993
).
29.
F.
Husson
,
S.
, and
J.
Pagès
, “
Confidence ellipse for the sensory profiles obtained by principal component analysis
,”
Food Qual. Pref.
16
(
3
),
245
250
(
2005
).
30.
William H.
Press
,
Numerical Recipes in C: The Art of Scientific Computing
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1992
), Vol.
1
, Chap. Modeling of data, pp.
689
699
.
31.
K. M.
Gorski
,
E.
Hivon
,
A. J.
Banday
,
B. D.
Wandelt
,
F. K.
Hansen
,
M.
Reinecke
, and
M.
Bartelmann
, “
Healpix: A framework for high-resolution discretization and fast analysis of data distributed on the sphere
,”
Astrophys. J.
622
(
2
),
759
771
(
2005
).
32.
Stuart
Coles
,
An Introduction to the Statistical Modeling of Extreme Values
(
Springer-Verlag
,
London
,
2001
).
33.
P.
Berens
, “
CircStat: A MATLAB toolbox for circular statistics
,”
J. Stat. Softw.
31
(
10
),
1
21
(
2009
).
34.
See supplementary material at http://dx.doi.org/10.1121/1.4940667 for values of major axis, minor axis, and error anisotropy for the reception beam pattern samples from the bat families studied.
35.
B. D.
Lawrence
and
J. A.
Simmons
, “
Echolocation in bats: The external ear and perception of the vertical positions of targets
,”
Science
218
,
481
483
(
1982
).
36.
J. A.
Simmons
,
S. A.
Kick
,
B. D.
Lawrence
,
C.
Hale
,
C.
Bard
, and
B.
Escudie
, “
Acuity of horizontal angle discrimination by the echolocating bat, Eptesicus fuscus
,”
J. Comp. Physiol. A
153
(
3
),
321
330
(
1983
).
37.
G. R.
Long
and
H.-U.
Schnitlzer
, “
Behavioural audiograms from the bat, Rhinolophus ferrumequinum
,”
J. Comp. Physiol.
100
,
211
219
(
1975
).
38.
A.
Surlykke
and
E. K. V.
Kalko
, “
Echolocating bats cry out loud to detect their prey
,”
PLoS One
3
(
4
),
1
10
(
2008
).
39.
Y.
Yovel
,
B.
Falk
,
C. F.
Moss
, and
N.
Ulanovsky
, “
Optimal localization by pointing off axis
,”
Science
327
(
5966
),
701
704
(
2010
).
40.
J.
Blauert
,
Spatial Hearing—Revised Edition: The Psychophysics of Human Sound Localization
(
MIT Press
,
Cambridge, MA
,
1996
).
41.
D. J.
Tollin
and
T. C. T.
Yin
, “
Spectral cues explain illusory elevation effects with stereo sounds in cats
,”
J. Neurophysiol.
90
(
1
),
525
530
(
2003
).
42.
I.
Poganiatz
and
H.
Wagner
, “
Sound-localization experiments with barn owls in virtual space: Influence of broadband interaural level difference on head-turning behavior
,”
J. Comp. Physiol. A
187
(
3
),
225
233
(
2001
).

Supplementary Material

You do not currently have access to this content.