A recent publication by McCargar and Zurk [(2013). J. Acoust. Soc. Am. 133(4), EL320–EL325] introduced a modified Fourier transform-based method for passive source depth estimation using vertical line arrays deployed below the critical depth in the deep ocean. This method utilizes the depth-dependent modulation caused by the interference between the direct and surface-reflected acoustic arrivals, the observation of which is enhanced by propagation through the reliable acoustic path. However, neither the performance of this method nor its limits of applicability have yet been thoroughly investigated. This paper addresses both of these issues; the first by identifying and analyzing the factors that influence the resolution and ambiguity in the transform-based depth estimate; the second by introducing another, much simpler depth estimation method, which is used to determine the target trajectories required for observation of the interference pattern and the array requirements for accurate depth estimation.

1.
Wenz
,
G. M.
, “
Acoustic ambient noise in the ocean: Spectra and sources
,”
J. Acoust. Soc. Am.
34
(
12
),
1936
1956
(
1962
).
2.
Gaul
,
R. D.
,
Knobles
,
D. P.
,
Shooter
,
J. A.
, and
Wittenborn
,
A. F.
, “
Ambient noise analysis of deep-ocean measurements in the Northeast Pacific
,”
IEEE J. Oceanic Eng.
32
(
2
),
497
512
(
2007
).
3.
Li
,
Z.
,
Zurk
,
L. M.
, and
Ma
,
B.
, “
Vertical arrival structure of shipping noise in deep water channels
,” in
OCEANS 2010
(
IEEE
,
New York
,
2010
), pp.
1
8
.
4.
Urick
,
R. J.
,
Principles of Underwater Sound for Engineers
(
McGraw-Hill
,
New York
,
1967
), Chap. 6.
5.
McCargar
,
R. K.
and
Zurk
,
L. M.
, “
Depth-based suppression of moving interference with vertical line arrays in the deep ocean
,”
J. Acoust. Soc. Am.
132
(
3
),
2081
(
2012
).
6.
Baggeroer
,
A. B.
,
Kuperman
,
W. A.
, and
Mikhalevsky
,
P. N.
, “
An overview of matched field methods in ocean acoustics
,”
IEEE J. Oceanic Eng.
18
(
4
),
401
424
(
1993
).
7.
Zurk
,
L. M.
,
Lee
,
N.
, and
Ward
,
J.
, “
Source motion mitigation for adaptive matched field processing
,”
J. Acoust. Soc. Am.
113
(
5
),
2719
2731
(
2003
).
8.
McCargar
,
R.
and
Zurk
,
L. M.
, “
Depth-based signal separation with vertical line arrays in the deep ocean
,”
J. Acoust. Soc. Am.
133
(
4
),
EL320
EL325
(
2013
).
9.
Zurk
,
L. M.
,
Boyle
,
J. K.
, and
Shibley
,
J.
, “
Depth-based passive tracking of submerged sources in the deep ocean using a vertical line array
,” in
2013 Asilomar Conference on Signals, Systems and Computers
(
IEEE
,
New York
), pp.
2130
2132
(
2013
).
10.
Reeder
,
D. B.
, “
Clutter depth discrimination using the wavenumber spectrum
,”
J. Acoust. Soc. Am.
135
(
1
),
EL1
EL7
(
2014
).
11.
Duan
,
R.
,
Yang
,
K.
,
Ma
,
Y.
,
Yang
,
Q.
, and
Li
,
H.
, “
Moving source localization with a single hydrophone using multipath time delays in the deep ocean
,”
J. Acoust. Soc. Am.
136
(
2
),
EL159
EL165
(
2014
).
12.
Jensen
,
F. B.
,
Kuperman
,
W. A.
,
Porter
,
M. B.
, and
Schmidt
,
H.
,
Computational Ocean Acoustics
(
Springer
,
New York
,
2011
), Chap. 5.
13.
Munk
,
W. H.
, “
Sound channel in an exponentially stratified ocean, with application to SOFAR
,”
J. Acoust. Soc. Am.
55
(
2
),
220
226
(
1974
).
14.
Goodman
,
J. W.
,
Introduction to Fourier Optics
, 3rd ed. (
Roberts and Company
,
Greenwood Village, CO
2004
), Chap. 3.
15.
Boyle
,
J. K.
, “
Performance metrics for depth-based signal separation using deep vertical line arrays
,” Master's thesis,
Portland State University
,
Portland, OR
,
2015
.
16.
Van Trees
,
H. L.
,
Detection, Estimation, and Modulation Theory, Optimum Array Processing
(
Wiley
,
New York
,
2004
), Chap. 2.
You do not currently have access to this content.