A numerical modeling method for accurately predicting the acoustophoretic motion of compressible microparticles in microfluidic devices is presented to consider the effects of fluid medium flow and spatial temperature variation that can significantly influence the acoustophoretic motion. In the proposed method, zeroth-order fluid medium flow and temperature, and first- and second-order acoustic fields in the microfluidic devices are first calculated by applying quadratic mapping functions and a second-order finite difference method (FDM) to perturbed mass, momentum, and energy conservation equations and state equation. Then, the acoustic radiation force is obtained based on the Gorkov's acoustic radiation force equation and applied to the Newton's Equation of Motion to calculate the microparticle motion. The proposed method was validated by comparing its results to a commercial software package, COMSOL Multiphysics results, one-dimensional, analytical modeling results, and experimental results. It is shown that the fluid medium flow affects the acoustic radiation force and streaming significantly, resulting in the acoustic radiation force and streaming prediction errors of 10.9% and 67.4%, respectively, when the fluid medium flow speed is increased from 0 to 1 m/s. A local temperature elevation from 20 °C to 22 °C also results in the prediction errors of 88.4% and 73.4%.

1.
L.
Kang
,
B. G.
Chung
,
R.
Langer
, and
A.
Khademhosseini
, “
Microfluidics for drug discovery and development: From target selection to product lifecycle management
,”
Drug Discov. Today
13
,
1
13
(
2008
).
2.
M.
Eisenstein
, “
Cell sorting: Divide and conquer
,”
Nature
441
,
1179
1185
(
2006
).
3.
H.
Jönsson
,
A.
Nilsson
,
F.
Petersson
,
M.
Allers
, and
T.
Laurell
, “
Particle separation using ultrasound can be used with human shed mediastinal blood
,”
Perfusion
20
,
39
43
(
2005
).
4.
C. W.
Yung
,
J.
Fiering
,
A. J.
Mueller
, and
D. E.
Ingber
, “
Micromagnetic-microfluidic blood cleansing device
,”
Lab Chip
9
,
1171
1177
(
2009
).
5.
D. R.
Gossett
,
W. M.
Weaver
,
A. J.
Mach
,
S. C.
Hur
,
H. T. K.
Tse
,
W.
Lee
,
H.
Amini
, and
D. D.
Carlo
, “
Label-free cell separation and sorting in microfluidic systems
,”
Anal. Bioanal. Chem.
397
,
3249
3267
(
2010
).
6.
A.
Lenshof
and
T.
Laurell
, “
Continuous separation of cells and particles in microfluidic systems
,”
Chem. Soc. Rev.
39
,
1203
1217
(
2010
).
7.
H.
Tsutsui
and
C.-M.
Ho
, “
Cell separation by non-inertial force fields in microfluidic systems
,”
Mech. Res. Commun.
36
,
92
103
(
2009
).
8.
K. H.
Han
,
A.
Han
, and
A. B.
Frazier
, “
Microsystems for isolation and electrophysiological analysis of breast cancer cells from blood
,”
Biosens. Bioelectron.
21
,
1907
1914
(
2006
).
9.
J.
Takagi
,
M.
Yamada
,
M.
Yasuda
, and
M.
Seki
, “
Continuous particle separation in a microchannel having asymmetrically arranged multiple branches
,”
Lab Chip
5
,
778
784
(
2005
).
10.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
, “
Continuous particle separation in spiral microchannels using Dean flows and differential migration
,”
Lab Chip
8
,
1906
1914
(
2008
).
11.
L. R.
Huang
,
E. C.
Cox
,
R. H.
Austin
, and
J. C.
Sturm
, “
Continuous particle separation through deterministic lateral displacement
,”
Science
304
,
987
990
(
2004
).
12.
S.
Kapishnikov
,
V.
Kantsler
, and
V.
Steinberg
, “
Continuous particle size separation and size sorting using ultrasound in a microchannel
,”
J. Stat. Mech. Theor. Exp.
2006
,
P01012
.
13.
F.
Petersson
,
L.
Aberg
,
A.-M.
Swärd-Nilsson
, and
T.
Laurell
, “
Free flow acoustophoresis: Microfluidic-based mode of particle and cell separation
,”
Anal. Chem.
79
,
5117
5123
(
2007
).
14.
M.
Evander
,
A.
Lenshof
,
T.
Laurell
, and
J.
Nilsson
, “
Acoustophoresis in wet-etched glass chips
,”
Anal. Chem.
80
,
5178
5185
(
2008
).
15.
J.
Shi
,
H.
Huang
,
Z.
Stratton
,
Y.
Huang
, and
T. J.
Huang
, “
Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW)
,”
Lab Chip
9
,
3354
3359
(
2009
).
16.
J.
Nam
,
Y.
Lee
, and
S.
Shin
, “
Size-dependent microparticles separation through standing surface acoustic waves
,”
Microfluid Nanofluid
11
,
317
326
(
2011
).
17.
L. V.
King
, “
On the acoustic radiation pressure on spheres
,”
Proc. R. Soc. London Ser. A
147
,
212
240
(
1934
).
18.
K.
Yosioka
and
Y.
Kawasima
, “
Acoustic radiation pressure on a compressible sphere
,”
Acustica
5
,
167
173
(
1955
).
19.
L. P.
Gorkov
, “
On the forces acting on a small particle in an acoustical field in an ideal fluid
,”
Sov. Phys. Dokl.
6
,
773
775
(
1962
).
20.
W. L.
Nyborg
, “
Radiation pressure on a small rigid sphere
,”
J. Acoust. Soc. Am.
42
,
947
952
(
1967
).
21.
A.
Eller
, “
Force on a bubble in a standing acoustic wave
,”
J. Acoust. Soc. Am.
43
,
170
171
(
1968
).
22.
L. A.
Crum
, “
Acoustic force on a liquid droplet in an acoustic stationary wave
,”
J. Acoust. Soc. Am.
50
,
157
163
(
1971
).
23.
S. M.
Hagsäter
,
A.
Lenshof
,
P.
Skafte-Pedersen
,
J. P.
Kutter
,
T.
Laurell
, and
H.
Bruus
, “
Acoustic resonances in straight micro channels: Beyond the 1D-approximation
,”
Lab Chip
8
,
1178
1184
(
2008
).
24.
S. M.
Hägsater
,
T. G.
Jensen
,
H.
Bruus
, and
J. P.
Kutter
, “
Acoustic resonances in microfluidic chips: Full-image micro-PIV experiments and numerical simulations
,”
Lab Chip
7
,
1336
1344
(
2007
).
25.
M.
Settnes
and
H.
Bruus
, “
Forces acting on a small particle in an acoustical field in a viscous fluid
,”
Phys. Rev. E
85
,
016327
(
2012
).
26.
H.
Bruus
,
Theoretical Microfluidics
, 1st ed. (
Oxford University Press
,
Oxford, UK
,
2008
), pp.
19
27
, 255–271.
27.
M. F.
Hamilton
and
D. T.
Blackstock
,
Nonlinear Acoustics
, 1st ed. (
Academic Press
,
San Diego, CA
,
1998
), pp.
25
37
, 279–284.
28.
B.
Gustafsson
,
High Order Difference Methods for Time Dependent PDE
, 1st ed. (
Springer Verlag
,
Berlin, Germany
,
2008
), pp.
81
114
.
29.
P. B.
Muller
,
R.
Barnkob
,
M. J. H.
Jensen
, and
H.
Bruus
, “
A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces
,”
Lab Chip
12
,
4617
4627
(
2012
).
30.
W. M.
Haynes
,
CRC Handbook of Chemistry and Physics
, 93rd ed. (
CRC Press
,
Cleveland, OH
,
2012
),
251
pp.
31.
P.
Morse
and
K.
Ingard
,
Theoretical Acoustics
, 1st ed. (
McGraw-Hill
,
New York
,
1968
), pp.
828
882
.
32.
M.
Bruneau
,
Fundamentals of Acoustics
(
ISTE Ltd.
,
Newport Beach, CA
,
2006
), pp.
511
575
.
33.
V.
Shutilov
,
Fundamental Physics of Ultrasound
(
Gordon and Breach Science Publishers
,
New York
,
1988
), pp.
295
303
.
34.
J. N.
Reddy
,
An Introduction to the Finite Element Method
, 2nd ed. (
McGraw-Hill
,
New York
,
1993
), pp.
404
429
.
35.
M.
Farrashkhalvat
and
J. P.
Miles
,
Basic Structured Grid Generation With an Introduction to Unstructured Grid Generation
, 1st ed. (
Butterworth-Heinemann
,
Boston, MA
,
2003
), pp.
76
108
.
36.
X.
Yu
,
W.
Weng
,
P. A.
Taylor
, and
D.
Liang
, “
Relaxation factor effects in the non-linear mixed spectral finite difference model of flow over topographic features
,”
Bound. Layer Meteor.
140
,
23
35
(
2011
).
37.
H.
Bruus
, “
Acoustofluidics 2: Perturbation theory and ultrasound resonance modes
,”
Lab Chip
12
,
20
28
(
2012
).
38.
A. A.
Doinikov
, “
Acoustic radiation force on a spherical particle in a viscous heat-conducting fluid. I. General formula
,”
J. Acoust. Soc. Am.
101
,
713
721
(
1997
).
39.
H.
Wang
,
Z. Z.
Liu
,
S.
Kim
,
C.
Koo
,
Y.
Cho
,
D.
Jang
,
Y.-J.
Kim
, and
A.
Han
, “
Microfluidic acoustophoretic force based low-concentration oil separation and detection from the environment
,”
Lab Chip
14
,
947
956
(
2014
).
40.
Z. Z.
Liu
,
A.
Han
, and
Y.-J.
Kim
, “
Two-dimensional numerical analyses of acoustophoresis phenomena in microfluidic channel with microparticle-suspended, viscous, moving fluid medium
,” in
Proceedings of ASME 2012 International Mechanical Engineering Congress and Exposition, IMECE2012-89912
,
Houston, TX
(2012), pp.
1
10
.
You do not currently have access to this content.