Within an underwater acoustic waveguide, the interference among multipath arrivals causes a phase difference in orthogonal components of the particle velocity. When two components of the particle velocity are not in phase, the fluid particles follow an elliptical trajectory. This property of the acoustic field can be readily detected by a vector sensor. A non-dimensional vector quantity, the degree of circularity, is used to quantify how much the trajectory resembles a circle. In this paper, vector sensor measurements collected during the 2013 Target and Reverberation Experiment are used to demonstrate the effect of multipath interference on the degree of circularity. Finally, geoacoustic properties representing the sandy sediment at the experimental site are inverted by minimization of a cost function, which quantifies the deviation between the measured and modeled degree of circularity.

1.
K. L.
Williams
, “
Sand acoustics: The effective density fluid model, Pierce/Carey expressions, and inferences for porous media modeling
,”
J. Acoust. Soc. Am.
125
,
EL164
EL170
(
2009
).
2.
R. A.
Koch
, “
Proof of principle for inversion of vector sensor array data
,”
J. Acoust. Soc. Am.
128
,
590
599
(
2010
).
3.
J. C.
Osler
,
D. M. F.
Chapman
,
P. C.
Hines
,
G. P.
Dooley
, and
A. P.
Lyons
, “
Measurement and modeling of seabed particle motion using buried vector sensors
,”
IEEE J. Ocean. Eng.
35
,
516
537
(
2010
).
4.
P.
Santos
,
O. C.
Rodriguez
,
P.
Felisberto
, and
S. M.
Jesus
, “
Seabed geoacoustic characterization with a vector sensor array
,”
J. Acoust. Soc. Am.
128
,
2652
2663
(
2010
).
5.
S. E.
Crocker
, “
Geoacoustic inversion using the vector field
,” Ph.D. dissertation,
University of Rhode Island
, Kingston, RI, Chap. 7,
2011
.
6.
Q.
Ren
,
J. V.
Candy
, and
J.-P.
Hermand
, “
Passive vector geoacoustic inversion in coastal areas using a sequential unscented Kalman filter
,” in
Proceedings of SYMPOL
(
2013
), pp.
101
106
.
7.
K. B.
Smith
,
J.-P.
Hermand
, and
A. V.
van Leijen
, “
Estimation of sediment attenuation from measurements of the acoustic vector field
,” in
8th International Conference on Theoretical and Computational Acoustics (ICTCA 2007)
(
2008
), edited by
M.
Taroudakis
and
P.
Papadakis
, pp.
31
38
.
8.
D. R.
Dall'Osto
,
P. H.
Dahl
, and
J. W.
Choi
, “
Properties of the acoustic intensity vector field in a shallow water waveguide
,”
J. Acoust. Soc. Am.
131
,
2023
2035
(
2012
).
9.
J. A.
Mann
 III
and
J.
Tichy
, “
Acoustic intensity analysis: Distinguishing energy propagation and wave-front propagation
,”
J. Acoust. Soc. Am.
90
,
20
25
(
1991
).
10.
V. A.
Gordienko
,
T. V.
Gordienko
,
N. V.
Krasnopistzevb
, and
V. N.
Nekrasovb
, “
Vector-phase methods and the development of advanced new-generation acoustic systems
,”
Moscow Univ. Phys. Bull. (Engl. Transl.)
69
(
2
),
105
123
(
2014
).
11.
G. L.
D'Spain
, “
Polarization of acoustic particle motion in the ocean and its relation to vector acoustic intensity
,” in
2nd International Workshop on Acoust. Eng. and Tech.
,
Harbin, China
(
1999
).
12.
D. R.
Dall'Osto
and
P. H.
Dahl
, “
Elliptical acoustic particle motion in underwater waveguides
,”
J. Acoust. Soc. Am.
134
,
109
118
(
2013
).
13.
V. A.
Shchurov
,
V. P.
Kuleshov
, and
A. V.
Cherkasov
, “
Vortex properties of the acoustic intensity vector in a shallow sea
,”
Acoust. Phys.
57
(
6
),
851
856
(
2011
).
14.
M. J.
Buckingham
, “
On pore-fluid viscosity and the wave properties of saturated granular materials including marine sediments
,”
J. Acoust. Soc. Am.
122
,
1486
1501
(
2007
).
15.
J.
Yang
and
D.
Tang
, “
In situ measurements of sediment sound speed in the frequency band of 2–10 kHz at target and reverberation experiment site
,”
J. Acoust. Soc. Am.
134
,
4251
(
2013
).
16.
G. V.
Frisk
,
Ocean and Seabed Acoustics: A Theory of Wave Propagation
(
Prentice Hall
,
Englewood Cliffs, NJ
,
1994
), pp.
80
89
.
17.
G. L.
D'Spain
,
D. P.
Williams
,
G.
Rovner
,
W. A.
Kuperman
, and
the SWARM 95 Team
, “
Energy flow in interference fields
,” in
Proceedings of Ocean Acoustic Interference Phenomena and Signal Processing
(
2002
), pp.
171
203
.
18.
M. D.
Collins
, “
A split-step Pade solution for the parabolic equation method
,”
J. Acoust. Soc. Am.
93
,
1736
1742
(
1993
).
You do not currently have access to this content.