In four experiments listeners were rotated or were stationary. Sounds came from a stationary loudspeaker or rotated from loudspeaker to loudspeaker around an azimuth array. When either sounds or listeners rotate the auditory cues used for sound source localization change, but in the everyday world listeners perceive sound rotation only when sounds rotate not when listeners rotate. In the everyday world sound source locations are referenced to positions in the environment (a world-centric reference system). The auditory cues for sound source location indicate locations relative to the head (a head-centric reference system), not locations relative to the world. This paper deals with a general hypothesis that the world-centric location of sound sources requires the auditory system to have information about auditory cues used for sound source location and cues about head position. The use of visual and vestibular information in determining rotating head position in sound rotation perception was investigated. The experiments show that sound rotation perception when sources and listeners rotate was based on acoustic, visual, and, perhaps, vestibular information. The findings are consistent with the general hypotheses and suggest that sound source localization is not based just on acoustics. It is a multisystem process.

1.
Alais
,
D.
,
Newell
,
F. N.
, and
Mamassian
,
P.
(
2010
). “
Multisensory processing in review: From physiology to behavior
,”
See. Perceiv.
23
,
3
38
.
2.
Altmann
,
C. F.
,
Wilczek
,
E.
, and
Kaiser
,
J.
(
2009
). “
Processing of auditory location changes after horizontal head rotation
,”
J. Neurosci.
29
,
13074
13078
.
3.
Arnoult
,
M. D.
(
1950
). “
Post-rotatory localization of sound
,”
Am. J. Psychol.
63
,
229
236
.
4.
Aubert
,
H.
(
1861
). “
Über eine scheinbare bedeutende Drehung von Objekten bei Neigung des Kopfses nach rechts oder links” (“On a virtually perceived rotation of objects upon tilting of the head rightward or leftward”)
,
Virchows Arch. Pathol. Anat. Physiol.
20
,
381
393
.
5.
Blauert
,
J.
(
1997
).
Spatial Hearing
(
MIT Press
,
Cambridge, MA
),
494
pp.
6.
Braunstein
,
M. L.
(
1976
).
Depth Perception though Motion
(
Academic
,
New York
),
213
pp.
7.
Brimijoin
,
W. O.
, and
Akeroyd
,
M. A.
(
2014
). “
The moving minimum audible angle is smaller during self motion than during source motion
,”
Front. Neurosci.
8
,
273
280
.
8.
Bruss
,
A.
, and
Horn
,
B.
(
1983
). “
Passive navigation
,”
Comput. Vision, Graphics, Image Process
21
,
3
20
.
9.
Clark
,
B.
, and
Graybiel
,
A.
(
1949
). “
The effect of angular acceleration on sound localization: The audiogyral illusion
,”
J. Psychol.
28
,
235
244
.
10.
DeAngelis
,
G. C.
, and
Angelaki
,
D. E.
(
2012
). “
Visual-vestibular integration for self-motion perception
,” in
The Neural Bases of Multisensory Processes
, edited by
E. E.
Murray
and
M. T.
Wallace
(
CRC Press
,
Boca Raton, FL
), Chap. 31.
11.
DiZio
,
P.
,
Held
,
R.
,
Lackner
,
J. R.
,
Shinn-Cunningham
,
B.
, and
Durlach
,
N.
(
2001
). “
Cravitoinertial force magnitude and direction influence head-centric auditory localization
,”
J. Nerurophys.
85
,
2455
2460
.
12.
Getzmann
,
S.
, and
Lewald
,
J.
(
2012
). “
Cortical processing of change in sound location: Smooth motion versus discontinuous displacement
,”
Brain Res.
1466
,
119
127
.
13.
Gibson
,
J. J.
(
1950
).
The Perception of the Visual World
(
Houghton Mifflin
,
Boston MA
),
235
pp.
14.
Goldstein
,
E. B.
(
2014
).
Sensation and Perception
, 9th ed. (
Wadsworth Cenngage Learning
,
Belmont, CA
),
465
pp.
15.
Goossens
H. H. L. M.
, and
Van Opstal
,
A. J.
(
1997
). “
Human eye-head coordination in two dimensions under different sensorimotor conditions
,”
Exp. Brain Res.
114
,
542
560
.
16.
Goossens
H. H. L. M.
, and
Van Opstal
,
A. J.
(
1999
). “
Influence of head position on the spatial representation of acoustic targets
,”
J. Neurophsiol.
81
,
2720
2736
.
17.
Grantham
,
D. W.
(
1986
). “
Detection and discrimination of simulated motion of auditory targets in the horizontal plane
,”
J. Acoust. Soc. Am
79
,
1939
1949
.
18.
Hafting
,
T.
,
Fyhn
,
M.
,
Molden
,
S.
,
Moser
,
M-B.
, and
Moser
,
E. I.
(
2005
). “
Microstructure of a spatial map in the entorhinal cortex
,”
Nature
436
,
801
806
.
19.
Hibbeler
,
R. C.
(
2012
).
Engineering Mechanics—Dynamics
, 13th ed. (
Prentice Hall
,
New York
),
768
pp.
20.
Honda
,
A.
,
Shibata
,
H.
,
Hidaka
,
A.
,
Gyoba
,
J.
,
Iwaya
,
Y.
, and
Suzuki
,
Y.
(
2013
). “
Effects of head movement and proprioceptive feedback in training sound localization
,”
i-Percept.
4
,
253
264
.
21.
Knudsen
,
E. I.
, and
Knudsen
,
P. K.
(
1989
). “
Vision calibrates sound localization in the developing barn owl
,”
J. Neurosci.
9
,
3302
3313
.
22.
Kondo
,
H. M.
,
Toshima
,
I.
,
Pressnitzer
,
D.
, and
Kashino
,
M.
(
2014
). “
Probing the time course of head-motion cues integration during auditory scene analysis
,”
Front. Neurosci.
8
,
110
116
.
23.
Kopinska
,
A.
, and
Harris
,
L. R.
(
2003
). “
Spatial representation in body coordinates: Evidence from errors in remembering positions of visual and auditory targets after active eye, head, and body movements
,”
Can. J. Exp. Psychol.
57
,
23
37
.
24.
Lackner
,
J. R.
(
1974
). “
The role of posture in sound localization
,”
Q. J. Exp. Psychol.
26
,
235
251
.
25.
Lackner
,
J. R.
, and
DiZio
,
P.
(
2005
). “
Vestibular, proprioceptive, and haptic contributions to spatial orientation
,”
Ann. Rev. Psychol.
56
,
115
147
.
26.
Lewald
,
J.
(
1997
). “
Eye-position effects in directional hearing
,”
Behav. Brain Res.
87
,
35
48
.
27.
Lewald
,
J.
(
2002
). “
Opposing effects of head position on sound localization in blind and sighted human subjects
,”
Eur. J. Neurosci.
15
,
1219
1224
.
28.
Lewald
,
J.
,
Dorrscheidt
,
G. J.
, and
Ehrenstein
,
W. H.
(
2000
). “
Sound localization with eccentric head position
,”
Behav. Brain Res.
108
,
105
125
.
29.
Lewald
,
J.
, and
Ehrenstein
,
W. H.
(
1998
). “
Influence of head-to-trunk position on sound lateralization
,”
Exp. Brain Res.
121
,
230
238
.
30.
Lewald
,
J.
, and
Karnath
,
H. O.
(
2000
). “
Vestibular influence on human auditory space perception
,”
J. Neurophysiol.
84
,
1107
1111
.
31.
Lewald
,
J.
, and
Karnath
,
H. O.
(
2001
). “
Sound lateralization during passive whole-body rotation
,”
Eur. J. Neurosci.
13
,
2268
2272
.
32.
Medendorp
,
W. P.
(
2011
). “
Spatial constancy mechanisms in motor control
,”
Philos. Trans. R. Soc., B
366
,
476
491
.
33.
Mergner
,
T.
,
Nasios
,
G.
,
Maurer
,
C.
, and
Becker
,
W.
(
2001
). “
Visual object localisation in space. Interaction of retinal, eye position, vestibular and neck proprioceptive information
,”
Exp. Brain Res.
141
,
33
51
.
34.
Middlebrooks
,
J. C.
, and
Green
,
D. M.
(
1991
). “
Sound localization by human listeners
,”
Ann. Rev., Psychol
42
,
135
159
.
35.
O'Keefe
,
J.
,
Burgess
,
N.
,
Donnett
,
J. G.
,
Jeffery
,
K. J.
, and
Maguire
,
E. A.
(
1998
). “
Place cells, navigational accuracy, and the human hippocampus
,”
Philos. Trans. R. Soc., B
353
,
1333
1340
.
36.
Perrett
,
S.
, and
Noble
,
W.
(
1997
). “
The effect of head rotations on vertical plane sound localization
,”
J. Acoust. Soc. Am.
102
,
2325
2332
.
37.
Perrott
,
D. R.
, and
Musicant
,
A. D.
(
1977
). “
Minimum auditory movement angle: Binaural localization of moving sound sources
,”
J. Acoust. Soc. Am.
62
,
1463
1466
.
38.
Pettorossi
,
V. E.
,
Brosch
,
M.
,
Panichi
,
R.
,
Botti
,
F.
,
Grassi
,
S.
, and
Troiani
,
D.
(
2005
). “
Contribution of self-motion perception to acoustic target localization
,”
Acta Oto-Laryng.
125
,
524
528
.
39.
Pynn
,
L. K.
, and
DeSouza
,
J. F. X.
(
2013
). “
The function of efference copy signals: Implications for symptoms of schizophrenia
,”
Vision Res.
76
,
124
133
.
40.
Rayleigh (J. W. Strutt)
(
1876
). “
On our perception of the direction of a source of sound
,”
Proceedings of the Music Association
, pp.
75
84
.
41.
Razavi
,
B.
,
O'Neill
,
W. E.
, and
Paige
,
G. D.
(
2007
). “
Auditory spatial perception dynamically realigns with changing eye position
,”
J. Neurosci.
27
,
10249
10258
.
42.
Royden
,
C. S.
, and
Moore
,
K. D.
(
2012
). “
Use of speed cues in the detection of moving objects by moving observers
,”
Vis. Res.
59
,
17
24
.
43.
Ruhland
,
J. L.
,
Yin
,
T. C. T.
, and
Tollin
,
D. J.
(
2013
). “
Gaze shift to auditory and visual stimuli in cats
,”
J. Assoc. Res. Otolaryn.
14
,
731
755
.
44.
Schechtman
,
E.
,
Sherm
,
T.
, and
Deouell
,
L. Y.
(
2012
). “
Spatial localization of auditory stimuli in human auditory cortex is based on both head-independent and head-centered coordinate systems
,”
J. Neurosci.
32
,
13501
13509
.
45.
Shelton
,
B.
, and
Searle
,
C.
(
1980
). “
The influence of vision on the absolute identification of sound-source position
,”
Percept. Psychophys.
28
,
589
596
.
46.
Shenoy
,
K. V.
,
Bradley
,
D. C.
, and
Anderson
,
R. A.
(
1999
). “
Influence of gaze orientation on the visual response of primate MSTd neurons
,”
J. Neurophysiol.
81
,
2764
2786
.
47.
Sommer
,
M. A.
, and
Wurtz
,
R. H.
(
2008
). “
Brain circuits for the internal monitoring of movements
,”
Ann. Rev. Psychol.
32
,
317
338
.
47.
Tabry
,
V.
,
Zatorre
,
R. J.
, and
Voss
,
P.
(
2013
). “
The influence of vision on sound localization abilities both the horizontal and vertical planes
,”
Front. Psychol.
4
,
932
938
.
48.
Thurlow
,
W. R.
, and
Runge
,
P. S.
(
1967
). “
Effect of induced head movements on localization of direction of sounds
,”
J. Acoust. Soc. Am.
42
,
480
488
.
49.
Van Barneveld
,
D. C. P. B. M.
, and
Van Opstal
,
A. J.
(
2010
). “
Eye position determines audiovestibular integration during whole-body rotation
,”
Eur. J. Neurosci.
31
,
920
930
.
50.
Van Grootel
,
T. J.
, and
Van Opstal
,
A. J.
(
2010
). “
Human sound-localization behavior accounts for ocular drift
,”
J. Neurophysiol.
103
,
1927
1936
.
51.
Vliegen
,
J.
,
Van Grootel
,
T. J.
, and
Van Opstal
,
A. J.
(
2004
). “
Dynamic sound localization during rapid eye-head gaze shifts
,”
J. Neurosci.
24
,
9291
9302
.
51.
Von Holst
,
E.
(
1954
). “
Relations between the central nervous system and the peripheral organs
,”
Brit. J. Anim. Beh.
2
,
89
94
.
52.
Wallach
,
H.
(
1939
). “
On sound localization
,”
J. Acoust. Soc. Am.
10
,
270
274
.
53.
Wallach
,
H.
(
1940
). “
The role of head movements and vestibular and visual cues in sound localization
,”
J. Exp. Psychol.
27
,
339
368
.
54.
Wightman
,
F. L.
, and
Kistler
,
D. J.
(
1999
). “
Resolution of front-back ambiguity in spatial hearing by listener and source movement
,”
J. Acoust. Soc. Am.
105
,
2841
2853
.
55.
Wolfe
,
J. M.
,
Kluender
,
K. R.
, and
Levi
,
D. M.
(
2012
).
Sensation and Perception
, 3rd ed. (
Sinauer Associates
,
Stamford CT
),
507
pp.
56.
Xiao
,
X.
, and
Grantham
,
D. W.
(
1997
). “
The effect of a free-filed auditory target's motion on its detectability in the horizontal plane
,”
J. Acoust. Soc. Am.
102
,
1907
1910
.
57.
Yantis
,
S.
(
2013
).
Sensation and Perception
(
Worth Publisher
,
Restin, VA
),
544
pp.
58.
Yost
,
W. A.
,
Loiselle
,
L.
,
Dorman
,
M.
,
Brown
,
C.
, and
Burns
,
J.
(
2013
). “
Sound source localization of filtered noises by listeners with normal hearing: A statistical analysis
,”
J. Acoust. Soc. Am.
133
,
2876
2882
.
59.
Yost
,
W. A.
, and
Zhong
,
X.
(
2014
). “
Sound source localization identification accuracy: Bandwidth dependencies
,”
J. Acoust. Soc. Am.
136
,
2737
2746
.
60.
Zambarbieri
,
D.
(
2002
). “
The latency of saccades toward auditory targets in humans
,”
Prog. Brain Res.
140
,
51
59
.
61.
Zhong
,
X.
, and
Yost
,
W. A.
(
2013
). “
Relationship between postural stability and spatial hearing
,”
J. Am. Acad. Audiol.
24
,
782
788
.
You do not currently have access to this content.