Computed tomography (CT) imaging and sound experimental measurements were used to reconstruct the acoustic properties (density, velocity, and impedance) of the forehead tissues of a deceased pygmy sperm whale (Kogia breviceps). The forehead was segmented along the body axis and sectioned into cross section slices, which were further cut into sample pieces for measurements. Hounsfield units (HUs) of the corresponding measured pieces were obtained from CT scans, and regression analyses were conducted to investigate the linear relationships between the tissues' HUs and velocity, and HUs and density. The distributions of the acoustic properties of the head at axial, coronal, and sagittal cross sections were reconstructed, revealing that the nasal passage system was asymmetric and the cornucopia-shaped spermaceti organ was in the right nasal passage, surrounded by tissues and airsacs. A distinct dense theca was discovered in the posterior-dorsal area of the melon, which was characterized by low velocity in the inner core and high velocity in the outer region. Statistical analyses revealed significant differences in density, velocity, and acoustic impedance between all four structures, melon, spermaceti organ, muscle, and connective tissue (p < 0.001). The obtained acoustic properties of the forehead tissues provide important information for understanding the species' bioacoustic characteristics.

1.
T. W.
Cranford
,
M.
Amundin
, and
K. S.
Norris
, “
Functional morphology and homology in the odontocete nasal complex: Implications for sound generation
,”
J. Morphol.
228
(
3
),
223
285
(
1996
).
2.
R. N.
Turner
and
K. S.
Norris
, “
Discriminative echolocation in a porpoise
,”
J. Exp. Anal. Behav.
9
(
5
),
535
544
(
1966
).
3.
R. H.
Penner
and
A. E.
Murchison
, “
Experimentally demonstrated echolocation in the Amazon River porpoise, Inia geoffrensis
,” in
Proc. 7th Ann. Conf. Bio. Sonar and Diving Mammals
(
Blainville
,
Quebec
),
1970
, pp.
7
17
.
4.
K. S.
Norris
, “
Some problems of echolocation in cetaceans
,” in
Marine Bioacoustics
(
Pergamon
,
New York
,
1964
), pp.
317
336
.
5.
W. W. L.
Au
,
D. S.
Houser
,
J. J.
Finneran
,
W.
Lee
,
L. A.
Talmadge
, and
P. W.
Moore
, “
The acoustic field on the forehead of echolocating Atlantic bottlenose dolphins (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
128
(
3
),
1426
1434
(
2010
).
6.
R.
Karol
,
C.
Litchfield
,
D. K.
Caldwell
, and
M. C.
Caldwell
, “
Compositional topography of melon and spermaceti organ lipids in the pygmy sperm whale Kogia breviceps: Implications for echolocation
,”
Mar. Biol.
47
(
2
),
115
123
(
1978
).
7.
S.
Huggenberger
,
M. A.
Rauschmann
,
T. J.
Vogl
, and
H. H.
Oelschläger
, “
Functional morphology of the nasal complex in the harbor porpoise (Phocoena phocoena L.)
,”
Anat. Rec.
292
(
6
),
902
920
(
2009
).
8.
T. W.
Cranford
,
V.
Trijoulet
,
C. R.
Smith
, and
P.
Krysl
, “
Validation of a vibroacoustic finite element model using bottlenose dolphin simulations: The dolphin biosonar beam is focused in stages
,”
Bioacoustics
23
(
2
),
161
194
(
2014
).
9.
T. W.
Cranford
,
W. R.
Elsberry
,
W. G.
Van Bonn
,
J. A.
Jeffress
,
M. S.
Chaplin
,
D. J.
Blackwood
,
D. A.
Carder
,
M. A.
Todd
, and
S. H.
Ridgway
, “
Observation and analysis of sonar signal generation in the bottlenose dolphin (Tursiops truncatus): Evidence for two sonar sources
,”
J. Exp. Mar. Biol. Ecol.
407
(
1
),
81
96
(
2011
).
10.
E. J.
Schenkkan
and
P. E.
Purves
, “
The comparative anatomy of the nasal tract and the function of the spermaceti organ in the Physeteridae (Mammalia, Odontoceti)
,”
Bijdragen tot de Dierkunde.
43
(
1
),
93
112
(
1973
).
11.
S. W.
Thornton
,
W. A.
McLellan
,
S. A.
Rommel
,
R. M.
Dillaman
,
D. P.
Nowacek
,
H. N.
Koopman
, and
D.
Pabst
, “
Morphology of the nasal apparatus in pygmy (Kogia breviceps) and dwarf (K. sima) sperm whales
,”
Anat. Rec.
298
(
7
),
1301
1326
(
2015
).
12.
M. R.
Clarke
, “
Production and control of sound by the small sperm whales, Kogia breviceps and K. sima and their implications for other Cetacea
,”
J. Mar. Biol. Assoc. U. K.
83
(
02
),
241
263
(
2003
).
13.
J. C.
Goold
and
M. R.
Clarke
, “
Sound velocity in the head of the dwarf sperm whale, Kogia sima, with anatomical and functional discussion
,”
J. Mar. Biol. Assoc. U. K.
80
(
03
),
535
542
(
2000
).
14.
M. F.
McKenna
,
T. W.
Cranford
,
A.
Berta
, and
N. D.
Pyenson
, “
Morphology of the odontocete melon and its implications for acoustic function
,”
Mar. Mamm. Sci.
28
(
4
),
690
713
(
2012
).
15.
K. S.
Norris
and
G. W.
Harvey
, “
Sound transmission in the porpoise head
,”
J. Acoust. Soc. Am.
56
,
659
664
(
1974
).
16.
J. L.
Aroyan
,
T. W.
Cranford
,
J.
Kent
, and
K. S.
Norris
, “
Computer modeling of acoustic beam formation in Delphinus delphis
,”
J. Acoust. Soc. Am.
92
,
2539
2545
(
1992
).
17.
C.
Wei
,
Y.
Zhang
, and
W. W. L.
Au
, “
Simulation of ultrasound beam formation of baiji (Lipotes vexillifer) with a finite element model
,”
J. Acoust. Soc. Am.
136
,
423
429
(
2014
).
18.
T. W.
Cranford
,
M. F.
Mckenna
,
M. S.
Soldevilla
,
S. M.
Wiggins
,
J. A.
Goldbogen
,
R. E.
Shadwick
,
P.
Krysl
,
J. A. S.
Leger
, and
J. A.
Hildebrand
, “
Anatomic geometry of sound transmission and reception in Cuvier's beaked whale (Ziphius cavirostris)
,”
Anat. Rec.
291
,
353
378
(
2008
).
19.
D. S.
Houser
,
J.
Finneran
,
D.
Carder
,
W.
Van Bonn
,
C.
Smith
,
C.
Hoh
,
R.
Mattrey
, and
S.
Ridgway
, “
Structural and functional imaging of bottlenose dolphin (Tursiops truncatus) cranial anatomy
,”
J. Exp. Biol.
207
(
21
),
3657
3665
(
2004
).
20.
M. S.
Soldevilla
,
M. F.
McKenna
,
S. M.
Wiggins
,
R. E.
Shadwick
,
T. W.
Cranford
, and
J. A.
Hildebrand
, “
Cuvier's beaked whale (Ziphius cavirostris) head tissues: Physical properties and CT imaging
,”
J. Exp. Biol.
208
,
2319
2332
(
2005
).
21.
C.
Wei
,
Z. T.
Wang
,
Z. C.
Song
,
K. X.
Wang
,
D.
Wang
,
W. W. L.
Au
, and
Y.
Zhang
, “
Acoustic property reconstruction of a Yangtze finless porpoise's (Neophocaena asiaeorientalis asiaeorientalis) head base on CT imaging
,”
PLoS One
10
(
4
),
e0121442
(
2015
).
22.
R. A.
Robb
,
Biomedical Imaging, Visualization, and Analysis
(
Wiley
,
New York
,
1999
), pp.
1
339
.
23.
F. A.
Duck
,
Physical Properties of Tissues: A Comprehensive Reference Book
(
Academic
,
San Diego
,
2013
), pp.
43
307
.
24.
M.
Bruneau
,
Fundamentals of Acoustics
(
Wiley
,
New York
,
2013
), pp.
15
168
.
25.
M. F.
Mckenna
,
J. A.
Goldbogen
,
J.
St. Leger
,
J. A.
Hildebrand
, and
T. W.
Cranford
, “
Evaluation of postmortem changes in tissue structure in the bottlenose dolphin (Tursiops truncatus)
,”
Anat. Rec.
290
(
8
),
1023
1032
(
2007
).
26.
S. H.
Ridgway
and
D. A.
Carder
, “
Assessing hearing and sound production in cetaceans not available for behavioral audiograms: Experiences with sperm, pygmy sperm, and gray whales
,”
Aquat. Mamm.
27
(
3
),
267
276
(
2001
).
27.
K.
Marten
, “
Ultrasonic analysis of pygmy sperm whale (Kogia breviceps) and Hubbs' beaked whale (Mesoplodon carlhubbsi) clicks
,”
Aquat. Mamm.
26
(
1
),
45
48
(
2000
).
28.
S. H.
Li
,
P. E.
Nachtigall
,
M.
Breese
, and
A. Y.
Supin
, “
Hearing sensation levels of emitted biosonar clicks in an echolocating Atlantic bottlenose dolphin
,”
PloS One
7
(
1
),
e29793
(
2012
).
29.
S. H.
Li
,
K. X.
Wang
,
D.
Wang
, and
T.
Akamatsu
, “
Echolocation signals of the free-ranging Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientialis)
,”
J. Acoust. Soc. Am.
117
(
5
),
3288
3296
(
2005
).
30.
S. H.
Li
,
K. X.
Wang
,
D.
Wang
,
S. Y.
Dong
, and
T.
Akamatsu
, “
Simultaneous production of low- and high-frequency sounds by neonatal finless porpoises
,”
J. Acoust. Soc. Am.
124
(
2
),
716
718
(
2008
).
31.
W. W. L.
Au
and
M.
Hastings
,
Principles of Marine Bioacoustics
(
Springer
,
New York
,
2008
), pp.
227
559
.
You do not currently have access to this content.