Dynamic acousto-elastic testing is applied to a mixture of lipid-coated microbubbles in water. A dynamic change of ambient pressure is produced by a 16 kHz pressure wave having a peak pressure amplitude of 28 kPa. The induced changes of phase velocity and attenuation are captured by a sequence of short ultrasound pulses with a center frequency of 4 MHz. As a consequence of the dispersion brought about by the resonance of microbubbles at a frequency close to 2 MHz, time-domain approaches like the cross-correlation method are shown to be unsuited to determine the variation in ultrasound wavespeed. A frequency-domain analysis shows that the acousto-elastic effect (first order pressure derivative of ultrasound phase velocity) depends on the ultrasound frequency. The acousto-elastic effect tends to that measured in water for an ultrasound frequency above the resonance frequency of microbubbles, while it is two orders of magnitude larger for an ultrasound frequency close to or below the resonance frequency of microbubbles. Besides the large magnitude of the acousto-elastic effect observed for an ultrasound frequency below the resonance frequency of microbubbles, the first order pressure derivative of ultrasound phase velocity is negative. This supports the occurrence of shell buckling of lipid-coated microbubbles induced by the 16 kHz pressure wave.

1.
J.
Pellam
and
J.
Galt
, “
Ultrasonic propagation in liquids: I. application of pulse technique to velocity and absorption measurements at 15 megacycles
,”
J. Chem. Phys.
14
,
608
614
(
1946
).
2.
L.
Zarembo
and
V.
Krasil'nikov
, “
Nonlinear phenomena in the propagation of elastic waves in solids
,”
Sov. Phys. Usp.
13
,
778
797
(
1971
).
3.
M.
Hamilton
and
D.
Blackstock
,
Nonlinear Acoustics, Theory and Applications
(
Academic
,
New York
,
1998
),
455
pp.
4.
P.
Marmottant
,
S.
van der Meer
,
M.
Emmer
,
M.
Versluis
,
N.
de Jong
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture
,”
J. Acoust. Soc. Am.
118
,
3499
3505
(
2005
).
5.
J.
Sijl
,
M.
Overvelde
,
B.
Dollet
,
V.
Garbin
,
N.
de Jong
,
D.
Lohse
, and
M.
Versluis
, “ 
‘Compression-only’ behavior: A second-order nonlinear response of ultrasound contrast agent microbubbles
,”
J. Acoust. Soc. Am.
129
,
1729
1739
(
2011
).
6.
V.
Zaitsev
,
A.
Dyskin
,
E.
Pasternak
, and
L.
Matveev
, “
Microstructure-induced giant elastic nonlinearity of threshold origin: Mechanism and experimental demonstration
,”
Europhys. Lett.
86
,
44005
(
2009
).
7.
G.
Renaud
,
S.
Callé
,
J.-P.
Remenieras
, and
M.
Defontaine
, “
Exploration of trabecular bone nonlinear elasticity using time-of-flight modulation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
55
(
7
),
1497
1507
(
2008
).
8.
G.
Renaud
,
S.
Callé
, and
M.
Defontaine
, “
Remote dynamic acoustoelastic testing: Elastic and dissipative acoustic nonlinearities measured under hydrostatic tension and compression
,”
Appl. Phys. Lett.
94
,
011905
(
2009
).
9.
G.
Gremaud
,
M.
Bujard
, and
W.
Benoit
, “
The coupling technique: A two-wave acoustic method for the study of dislocation dynamics
,”
J. Appl. Phys.
61
,
1795
1805
(
1987
).
10.
K.
Winkler
and
L.
McGowan
, “
Nonlinear acoustoelastic constants of dry and saturated rocks
,”
J. Geophys. Res.
109
,
B10204
, doi: (
2004
).
11.
L.
Hoff
,
P.
Sontum
, and
J.
Hovem
, “
Oscillations of polymeric microbubbles: Effect of the encapsulating shell
,”
J. Acoust. Soc. Am.
107
,
2272
2280
(
2000
).
12.
J.
O'Brien
,
E.
Stride
, and
N.
Ovenden
, “
Surfactant shedding and gas diffusion during pulsed ultrasound through a microbubble contrast agent suspension
,”
J. Acoust. Soc. Am.
134
,
1416
1427
(
2013
).
13.
K.
Commander
and
A.
Prosperetti
, “
Linear pressure waves in bubbly liquids: Comparison between theory and experiments
,”
J. Acoust. Soc. Am.
85
,
732
746
(
1989
).
14.
E.
Stride
, “
The influence of surface adsorption on microbubble dynamics
,”
Philos. Trans. A Math. Phys. Eng. Sci.
366
,
2103
2115
(
2008
).
15.
S.
Paul
,
A.
Katiyar
,
K.
Sarkar
,
D.
Chatterjee
,
W.
Shi
, and
F.
Forsberg
, “
Material characterization of the encapsulation of an ultrasound contrast microbubble and its subharmonic response: Strain-softening interfacial elasticity model
,”
J. Acoust. Soc. Am.
127
,
3846
3857
(
2010
).
16.
C.
Church
, “
Prediction of rectified diffusion during nonlinear bubble pulsations at biomedical frequencies
,”
J. Acoust. Soc. Am.
83
,
2210
2217
(
1988
).
17.
E.
Stride
and
N.
Saffari
, “
Investigating the significance of multiple scattering in ultrasound contrast agent particle populations
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
,
2332
2345
(
2005
).
18.
C.
Greis
, “
Technology overview: Sonovue (Bracco, Milan)
,”
Eur. Radiol. Suppl.
14
,
11
15
(
2004
).
19.
J.
Gorce
,
M.
Arditi
, and
M.
Schneider
, “
Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: A study of sonovue
,”
Invest. Radiol.
35
,
661
671
(
2000
).
20.
S.
van der Meer
,
B.
Dollet
,
M.
Voormolen
,
C.
Chin
,
A.
Bouakaz
,
N.
de Jong
,
M.
Versluis
, and
D.
Lohse
, “
Microbubble spectroscopy of ultrasound contrast agents
,”
J. Acoust. Soc. Am.
121
,
648
656
(
2007
).
21.
M.
Tang
and
R.
Eckersley
, “
Frequency and pressure dependent attenuation and scattering by microbubbles
,”
Ultrasound Med. Biol.
33
,
164
168
(
2007
).
22.
R.
Beyer
, “
Parameter of nonlinearity in fluids
,”
J. Acoust. Soc. Am.
32
,
719
721
(
1960
).
23.
O.
Bou Matar
,
F.
van der Meulen
,
J.-P.
Remenieras
,
F.
Tranquart
, and
F.
Patat
, “
Experimental and theoretical study of the nonlinear parameter dispersion of contrast agents
,”
Proc. World Congr. Ultrason.
2
,
971
974
(
2003
).
24.
M.
Tang
,
J.
Loughran
,
E.
Stride
,
D.
Zhang
, and
R.
Eckersley
, “
Effect of bubble shell nonlinearity on ultrasound nonlinear propagation through microbubble populations
,”
J. Acoust. Soc. Am.
129
,
EL76
EL82
(
2011
).
25.
D.
Goertz
,
N.
de Jong
, and
A.
van der Steen
, “
Attenuation and size distribution measurements of definity and manipulated definity populations
,”
Ultrasound Med. Biol.
33
,
1376
1388
(
2007
).
26.
J.
Raymond
,
K.
Haworth
,
K.
Bader
,
K.
Radhakrishnan
,
J.
Griffin
,
S.-L.
Huang
,
D.
McPherson
, and
C.
Holland
, “
Broadband attenuation measurements of phospholipid-shelled ultrasound contrast agents
,”
Ultrasound Med. Biol.
40
,
410
421
(
2014
).
27.
D.
Trivett
,
H.
Pincon
, and
P.
Rogers
, “
Investigation of a three-phase medium with a negative parameter of nonlinearity
,”
J. Acoust. Soc. Am.
119
,
3610
3617
(
2006
).
28.
H.
Moreschi
,
A.
Novell
,
S.
Callé
,
M.
Defontaine
, and
A.
Bouakaz
, “
Characterization of nonlinear viscoelastic properties of ultrasound contrast agents
,”
Proc. of IEEE International Ultrasonics Symposium
,
Roma, Italy
(
2009
), pp.
251
254
.
29.
D.
Holcomb
, “
Discrete memory in rock: A review
,”
J. Rheol.
28
,
725
758
(
1984
).
30.
R.
Guyer
,
K.
McCall
, and
G.
Boitnott
, “
Hysteresis, discrete memory and nonlinear wave propagation in rock: A new paradigm
,”
Phys. Rev. Lett.
74
,
3491
3494
(
1995
).
31.
O.
Vakhnenko
,
O.
Vakhnenko
, and
T.
Shankland
, “
Soft-ratchet modeling of end-point memory in the nonlinear resonant response of sedimentary rocks
,”
Phys. Rev. B
71
,
174103
(
2005
).
32.
G.
Renaud
,
P.-Y.
Le Bas
, and
P. A.
Johnson
, “
Revealing highly complex elastic nonlinear (anelastic) behavior of Earth materials applying a new probe: Dynamic acoustoelastic testing
,”
J. Geophys. Res.
117
,
B06202
, doi: (
2012
).
33.
G.
Renaud
,
J.
Rivière
,
S.
Haupert
, and
P.
Laugier
, “
Anisotropy of dynamic acoustoelasticity in limestone, influence of conditioning, and comparison with nonlinear resonance spectroscopy
,”
J. Acoust. Soc. Am.
133
,
3706
3718
(
2013
).
34.
V.
Aleshin
and
K.
Van Den Abeele
, “
Microcontact-based theory for acoustics in microdamaged materials
,”
J. Mech. Phys. Solids
55
,
366
390
(
2007
).
35.
P.
Sontum
, “
Physicochemical characteristics of sonazoid, a new contrast agent for ultrasound imaging
,”
Ultrasound Med. Biol.
34
,
824
833
(
2008
).
36.
L.
Hoff
and
P.
Sontum
, “
Acoustic characterisation of nycomed's NC100100 contrast agent
,”
Proc. IEEE Int. Ultrason. Symp.
2
,
1799
1802
(
1998
).
37.
L.
Hoff
,
Acoustic Characterization of Contrast Agents for Medical Ultrasound Imaging
(
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
,
2001
), pp.
1
228
.
38.
S.
Rugonyi
,
E.
Smith
, and
S.
Hall
, “
Transformation diagrams for the collapse of a phospholipid monolayer
,”
Langmuir
20
,
10100
10106
(
2004
).
You do not currently have access to this content.