Experimental measurements of Scholte waves from underwater explosions collected off the coast of Virginia Beach, VA in shallow water are presented. It is shown here that the dispersion of these explosion-generated Scholte waves traveling in the sandy seabed can be modeled using a power-law dependent shear wave speed profile and an empirical source model that determines the pressure time-series at 1 m from the source as a function of TNT-equivalent charge weight.

1.
M. E.
dos Santos
,
M. N.
Couchinho
,
A. R.
Luis
, and
E. J.
Goncalves
,
“Monitoring underwater explosions in the habitat of resident bottlenose dolphins,”
J. Acoust. Soc. Am.
128
,
3805
3808
(
2010
).
2.
D.
Rauch
,
“Seismic interface waves in coastal waters: A review,”
report, SACLANTCEN, La-Spezia, Italy (
1980
).
3.
F.
Gassmann
,
“Elastic waves through a packing of spheres,”
Geophysics
16
,
673
685
(
1951
).
4.
O. A.
Godin
and
D. M.
Chapman
,
“Dispersion of interface waves in sediments with power-law shear speed profiles. I. Exact and approximate analytical results,”
J. Acoust. Soc. Am.
110
,
1890
1907
(
2001
).
5.
A. D.
Pierce
and
W. M.
Carey
,
“Shear wave speed increases with depth to the one-sixth power in sandy-silty marine sediments,”
Proc. Meet. Acoust.
4
,
070006
(
2008
).
6.
D. R.
Jackson
and
M. D.
Richardson
,
High-Frequency Seafloor Acoustics
(
Springer
,
New York
,
2007
).
7.
A. G.
Soloway
and
P. H.
Dahl
,
“Peak sound pressure and sound exposure level from underwater explosions in shallow water,”
J. Acoust. Soc. Am.
136
,
EL218
EL223
(
2014
).
8.
N. R.
Chapman
,
“Measurement of the waveform parameters of shallow explosive charges,”
J. Acoust. Soc. Am.
78
,
672
681
(
1985
).
9.
N. R.
Chapman
,
“Source levels of shallow explosive charges,”
J. Acoust. Soc. Am.
84
,
697
702
(
1988
).
10.
J.
Ewing
,
J. A.
Carter
,
G. H.
Sutton
, and
N.
Barstow
,
“Shallow water sediment properties derived from high-frequency shear and interface waves,”
J. Geophys. Res. Solid Earth.
97
,
4739
4762
(
1992
).
11.
G.
Nolet
and
L. M.
Dorman
,
“Waveform analysis of Scholte modes in ocean sediment layers,”
Geophys. J. Int.
125
,
385
396
(
1996
).
12.
C. S.
Hardaway
,
C. H.
Hobbs
III
, and
D. A.
Milligan
, “
Investigations of offshore beach sands: Virginia Beach and Sandbridge, Virginia
,” report, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA (
1995
).
13.
J. A.
Collins
,
G. H.
Sutton
, and
J. I.
Ewing
,
“Shear-wave velocity structure of shallow-water sediments in the East China Sea,”
J. Acoust. Soc. Am.
100
,
3646
3654
(
1996
).
14.
D. M. F.
Chapman
and
O. A.
Godin
,
“Dispersion of interface waves in sediments with power-law shear speed profiles. II. Experimental observations and seismo-acoustic inversions,”
J. Acoust. Soc. Am.
110
,
1908
1916
(
2001
).
15.
P.
Bergamo
,
L.
Bodet
,
L. V.
Socco
,
R.
Mourgues
, and
V.
Tournat
,
“Physical modeling of a surface-wave survey over a laterally varying granular medium with property contrasts and velocity gradients,”
Geophys. J. Int.
197
,
233
247
(
2014
).
16.
Henrik
Schmidt
,
Ocean Acoustics and Seismic Exploration Synthesis (OASES)
(
Department of Ocean Engineering, Massachusetts Institute of Technology
,
Cambridge
,
2011
).
17.
K.
Ohta
,
S.
Matsumoto
,
K.
Okabe
,
K.
Asano
, and
Y.
Kanamori
,
“Estimation of shear wave speed in ocean-bottom sediment using electromagnetic induction source,”
IEEE J. Ocean. Eng.
33
,
233
239
(
2008
).
You do not currently have access to this content.