Modal decomposition is often applied in elastodynamics and acoustics for the solution of problems related to propagation of mechanical disturbances in waveguides. One of the key elements of this method is the solution of an eigenvalue problem for obtaining the roots of the dispersion equation, which signify the wavenumbers of the waves that may exist in the system. For non-dissipative media, the wavenumber spectrum consists of a finite number of real roots supplemented by infinitely many imaginary and complex ones. The former refer to the propagating modes in the medium, whereas the latter constitute the so-called evanescent spectrum. This study investigates the significance of the evanescent spectrum in structure-waveguide interaction problems. Two cases are analysed, namely, a beam in contact with a fluid layer and a cylindrical shell interacting with an acousto-elastic waveguide. The first case allows the introduction of a modal decomposition method and the establishment of appropriate criteria for the truncation of the modal expansions in a simple mathematical framework. The second case describes structure-borne wave radiation in an offshore environment during the installation of a pile with an impact hammer—a problem that has raised serious concerns in recent years due to the associated underwater noise pollution.

1.
G.
Shkerdin
and
C.
Glorieux
, “
Lamb mode conversion in an absorptive bi-layer with a delamination
,”
J. Acoust. Soc. Am.
118
(
4
),
2253
2264
(
2005
).
2.
G.
Shkerdin
and
C.
Glorieux
, “
Interaction of lamb modes with delaminations in plates coated by highly absorbing materials
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
54
(
2
),
368
377
(
2007
).
3.
A.
Tsouvalas
and
A. V.
Metrikine
, “
A semi-analytical model for the prediction of underwater noise from offshore pile driving
,”
J. Sound Vib.
332
(
13
),
3232
3257
(
2013
).
4.
A.
Tsouvalas
and
A. V.
Metrikine
, “
A three-dimensional vibroacoustic model for the prediction of underwater noise from offshore pile driving
,”
J. Sound Vib.
333
(
8
),
2283
2311
(
2014
).
5.
S.
Stange
and
W.
Friederich
, “
Guided wave propagation across sharp lateral heterogeneities: The complete wavefield at a cylindrical inclusion
,”
Geophys. J. Int.
111
(
3
),
470
482
(
1992
).
6.
S.
Stange
and
W.
Friederich
, “
Guided wave propagation across sharp lateral heterogeneities: The complete wavefield at plane vertical discontinuities
,”
Geophys. J. Int.
109
(
1
),
183
190
(
1992
).
7.
K.
Aki
and
P. G.
Richards
,
Quantitative Seismology
, 2nd ed. (
University Science Books
,
Sausalito, CA
,
2002
),
700
pp.
8.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
(
Springer
,
Heidelberg
,
2012
), pp.
337
454
.
9.
J. D.
Achenbach
, “
Wave propagation in elastic solids
,” in
North-Holland Series in Applied Mathematics and Mechanics
, edited by
H. A.
Lauwerier
and
W. T.
Koiter
(
North-Holland
,
Amsterdam
,
1973
), pp.
226
236
.
10.
B.
Karp
and
D.
Durban
, “
Evanescent and propagating waves in prestretched hyperelastic plates
,”
Int. J. Solids Struct.
42
(
5–6
),
1613
1647
(
2005
).
11.
G.
Shkerdin
and
C.
Glorieux
, “
Interaction of lamb modes with an inclusion
,”
Ultrasonics
53
(
1
),
130
140
(
2013
).
12.
B.
Nennig
,
E.
Perrey-Debain
, and
M.
Ben Tahar
, “
A mode matching method for modeling dissipative silencers lined with poroelastic materials and containing mean flow
,”
J. Acoust. Soc. Am.
128
(
6
),
3308
3320
(
2010
).
13.
P. T.
Madsen
,
M.
Wahlberg
,
J.
Tougaard
,
K.
Lucke
, and
P.
Tyack
, “
Wind turbine underwater noise and marine mammals: Implications of current knowledge and data needs
,”
Mar. Ecol.: Prog. Ser.
309
,
279
295
(
2006
).
14.
J. A.
David
, “
Likely sensitivity of bottlenose dolphins to pile-driving noise
,”
Water Environ. J.
20
(
1
),
48
54
(
2006
).
15.
H.
Bailey
,
B.
Senior
,
D.
Simmons
,
J.
Rusin
,
G.
Picken
, and
P. M.
Thompson
, “
Assessing underwater noise levels during pile-driving at an offshore windfarm and its potential effects on marine mammals
,”
Mar. Pollut. Bull.
60
(
6
),
888
897
(
2010
).
16.
C.
Erbe
, “
International regulation of underwater noise
,”
Acoust. Aust.
41
(
1
),
12
19
(
2013
).
17.
K. F.
Graff
, “
Wave motion in elastic solids
,” in
Dover Books on Engineering Series
(
Dover Publications
,
New York
,
1975
), pp.
155
170
.
18.
J. D.
Kaplunov
,
L. Y.
Kossovich
, and
E. V.
Nolde
,
Dynamics of Thin Walled Elastic Bodies
(
Academic
,
San Diego
,
1998
), pp.
116
140
.
19.
E. K.
Westwood
,
C. T.
Tindle
, and
N. R.
Chapman
, “
A normal mode model for acousto-elastic ocean environments
,”
J. Acoust. Soc. Am.
100
(
6
),
3631
3645
(
1996
).
20.
L. M.
Delves
and
J. N.
Lyness
, “
A numerical method for locating the zeros of an analytic function
,”
Math. Comput.
21
(
100
),
543
560
(
1967
).
21.
X.
Ying
and
I. N.
Katz
, “
A reliable argument principle algorithm to find the number of zeros of an analytic function in a bounded domain
,”
Numer. Math.
53
(
1–2
),
143
163
(
1988
).
22.
C.
Gillan
,
A.
Schuchinsky
, and
I.
Spence
, “
Computing zeros of analytic functions in the complex plane without using derivatives
,”
Comput. Phys. Commun.
175
(
4
),
304
313
(
2006
).
23.
M.
Dellnitz
,
O.
Schtze
, and
Q.
Zheng
, “
Locating all the zeros of an analytic function in one complex variable
,”
J. Comput. Appl. Math.
138
(
2
),
325
333
(
2002
).
24.
T.
Johnson
and
W.
Tucker
, “
Enclosing all zeros of an analytic function: A rigorous approach
,”
J. Comput. Appl. Math.
228
(
1
),
418
423
(
2009
).
25.
E. L.
Hamilton
, “
Geoacoustic modeling of the sea floor
,”
J. Acoust. Soc. Am.
68
(
5
),
1313
1340
(
1980
).
26.
P. G.
Reinhall
and
P. H.
Dahl
, “
Underwater mach wave radiation from impact pile driving: Theory and observation
,”
J. Acoust. Soc. Am.
130
(
3
),
1209
1216
(
2011
).
27.
M.
Zampolli
,
M. J. J.
Nijhof
,
C. A. F.
de Jong
,
M. A.
Ainslie
,
E. H. W.
Jansen
, and
B. A. J.
Quesson
, “
Validation of finite element computations for the quantitative prediction of underwater noise from impact pile driving
,”
J. Acoust. Soc. Am.
133
(
1
),
72
81
(
2013
).
28.
T.
Lippert
and
O.
von Estorff
, “
The significance of parameter uncertainties for the prediction of offshore pile driving noise
,”
J. Acoust. Soc. Am.
136
(
5
),
2463
2471
(
2014
).
29.
M. J.
Buckingham
, “
Wave propagation, stress relaxation, and grain-to-grain shearing in saturated, unconsolidated marine sediments
,”
J. Acoust. Soc. Am.
108
(
6
),
2796
2815
(
2000
).
30.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid saturated porous solid: I. Low frequency range
,”
J. Acoust. Soc. Am.
28
(
2
),
168
178
(
1956
).
31.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid saturated porous solid: II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
(
2
),
179
191
(
1956
).
32.
Z. Y.
Zhang
and
C. T.
Tindle
, “
Improved equivalent fluid approximations for a low shear speed ocean bottom
,”
J. Acoust. Soc. Am.
98
(
6
),
3391
3396
(
1995
).
33.
M. J.
Buckingham
, “
Compressional and shear wave properties of marine sediments: Comparisons between theory and data
,”
J. Acoust. Soc. Am.
117
(
1
),
137
152
(
2005
).
You do not currently have access to this content.