In a recent computational model, Farahani and Zhang [J. Acoust. Soc. Am. 136, EL369−EL375 (2014)] concluded that intraglottal vortices did not affect the closing mechanism of the folds. In order to determine the validity of any model that addresses the issue of vortex significance, it is important that the results of the computational model are comparable to experimental results. The results of Farahani and Zhang's model are inconsistent with data published for experimental models, which may challenge the validity of their conclusions.

1.
G.
Fant
, “
Preliminaries to analysis of the human voice source
,”
STL-QPRS
4
,
1
27
(
1983
).
2.
I. R.
Titze
, “
The physics of small amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
,
1536
1552
(
1988
).
3.
K. N.
Stevens
,
Acoustic Phonetics
(
MIT Press
,
Cambridge, MA
,
2000
), pp.
75
126
.
4.
G.
Fant
,
Acoustic Theory of Speech Production
(
Mouton
,
The Hague, Netherlands
,
1960
), pp.
15
92
.
5.
J.
Sundberg
and
J.
Gauffin
, “
Waveform and spectrum of the glottal voice source
,” in
Frontiers of Speech Communication Research
, edited by
B.
Lindholm
and
S.
Ohman
(
Academic
,
New York
,
1979
), pp.
301
320
.
6.
E.
Holmberg
,
R. E.
Hillman
, and
J. S.
Perkell
, “
Glottal air flow and transglottal pressure measurements for male and female speakers in soft, normal and loud voice
,”
J. Acoust. Soc. Am.
84
,
511
529
(
1988
).
7.
J.
Gauffin
and
J.
Sundberg
, “
Spectral correlates of glottal voice source waveform characteristics
,”
J. Speech Lang. Hear. Res.
32
,
556
565
(
1989
).
8.
C. M.
Sapienza
and
E. T.
Stathopoulos
, “
Comparison of maximum flow declination rate: Children versus adults
,”
J. Voice
8
,
240
247
(
1994
).
9.
S.
Khosla
,
L.
Oren
,
J.
Ying
, and
E.
Gutmark
, “
Direct simultaneous measurement of intraglottal geometry and velocity fields in excised larynges
,”
Laryngoscope
124
,
S1
S13
(
2014
).
10.
L.
Oren
,
S.
Khosla
, and
E.
Gutmark
, “
Intraglottal pressure distribution computed from empirical velocity data in canine larynx
,”
J. Biomech.
47
,
1287
1293
(
2014
).
11.
L.
Oren
,
S.
Khosla
, and
E.
Gutmark
, “
Intraglottal geometry and velocity measurements in canine larynges
,”
J. Acoust. Soc. Am.
135
,
380
388
(
2014
).
12.
W.
Zhao
,
C.
Zhang
,
S. H.
Frankel
, and
L.
Mongeau
, “
Computational aeroacoustics of phonation, Part I: Computational methods and sound generation mechanisms
,”
J. Acoust. Soc. Am.
112
,
2134
2146
(
2002
).
13.
M.
Mihaescu
,
S.
Khosla
,
S.
Murugappan
, and
E.
Gutmark
, “
Unsteady laryngeal airflow simulations of the intra-glottal vortical structures
,”
J. Acoust. Soc. Am.
127
,
435
444
(
2010
).
14.
C. F.
de Luzan
,
J.
Chen
,
M.
Mihaescu
,
S. M.
Khosla
, and
E.
Gutmark
, “
Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx
,”
J. Biomech.
48
,
1248
1257
(
2015
).
15.
L.
Oren
,
S.
Khosla
,
D.
Dembinski
,
J.
Ying
, and
E.
Gutmark
, “
Direct measurement of planar flow rate in an excised canine larynx model
,”
Laryngoscope
125
,
383
388
(
2015
).
16.
K.
Khosla
,
L.
Oren
, and
E.
Gutmark
, “
An example of the role of basic science research to inform the treatment of UVFP
,”
Perspect. Voice Voice Disord.
24
,
37
50
(
2014
).
17.
S.
Murugappan
,
S.
Khosla
,
K.
Casper
,
L.
Oren
, and
E.
Gutmark
, “
Flow fields and acoustics in a unilateral scarred vocal fold model
,”
Ann. Otol. Rhinol. Laryngol.
118
,
44
50
(
2009
).
18.
M. H.
Farahani
and
Z.
Zhang
, “
A computational study of the effect of intraglottal vortex-induced negative pressure on vocal fold vibration
,”
J. Acoust. Soc. Am.
136
,
EL369
EL375
(
2014
).
19.
A.
Verneuil
,
D. A.
Berry
,
J.
Kreiman
,
B. R.
Gerratt
,
Y. E.
Ming
, and
G. S.
Berke
, “
Modeling measured glottal volume velocity waveforms
,”
Ann. Otol. Rhinol. Laryngol.
112
,
120
131
(
2003
).
20.
D. K.
Chhetri
,
Z.
Zhang
, and
J.
Neubauer
, “
Measurement of young's modulus of vocal folds by indentation
,”
J. Voice
25
,
1
7
(
2011
).
21.
L.
Oren
,
D.
Dembinski
,
E.
Gutmark
, and
S.
Khosla
, “
Characterization of the vocal fold vertical stiffness in a canine model
,”
J. Voice
28
,
297
304
(
2014
).
22.
A. L.
Perlman
,
I. R.
Titze
, and
D. S.
Cooper
, “
Elasticity of canine vocal fold tissue
,”
J. Speech Lang. Hear. Res.
27
,
212
219
(
1984
).
23.
G.
Berke
and
M.
Smith
Intraoperative measurement of the elastic modulus of the vocal fold. Part 2. Preliminary results
,”
Laryngoscope
102
,
770
778
(
1992
).
You do not currently have access to this content.