The coherence length of a horizontal array is the maximum separation between two points where coherent processing gives useful gain when a distant source is at broadside. In shallow water, the coherence length is limited by the environmental variability caused by several relevant oceanographic processes. In the present study, a statistical model is developed that quantifies how one oceanographic process, linear internal waves, affects the coherence length. A key input to the ocean sub-model is the vertically integrated energy density of the internal wave field. The acoustic sub-model is based on the adiabatic normal mode approximation and so should be reasonable for frequencies under 1 kHz. Numerical calculations using environmental data from the Shallow Water 2006 Experiment (SW06) show how the coherence length of individual modes varies with consequent effects on array coherence. The coherence length is shown to be a strong function of where the source and array are positioned in the water column. For a bottom-mounted array above a moderately lossy seabed, the model predicts a coherence length that depends only weakly on range, an effect observed in field experiments.

1.
W. M.
Carey
, “
The determination of signal coherence length based on signal coherence and gain measurements in deep and shallow water
,”
J. Acoust. Soc. Am.
104
,
831
837
(
1998
).
2.
J. F.
Lynch
,
T. F.
Duda
, and
J. A.
Colosi
, “
Acoustical horizontal array coherence lengths and the ‘Carey Number
,’ ”
Acoust. Today
10
,
10
19
(
2014
).
3.
W. M.
Carey
,
J. F.
Lynch
,
W. L.
Siegmann
,
I.
Rozenfeld
, and
B. J.
Sperry
, “
Sound transmission and spatial coherence in selected shallow-water areas: Measurements and theory
,”
J. Comput. Acoust.
14
,
265
298
(
2006
).
4.
B. G.
Katsnel'son
and
S. A.
Pereselkov
, “
Low-frequency horizontal acoustic refraction caused by internal wave solitons in a shallow sea
,”
Acoust. Phys.
46
,
684
691
(
2000
).
5.
R.
Oba
and
S.
Finette
, “
Acoustic propagation through anisotropic internal wave fields: Transmission loss, cross-range coherence, and horizontal refraction
,”
J. Acoust. Soc. Am.
111
,
769
784
(
2002
).
6.
M.
Badiey
,
Y.
Mu
,
J.
Lynch
,
J.
Apel
, and
S.
Wolf
, “
Temporal and azimuthal dependence of sound propagation in shallow water with internal waves
,”
IEEE J. Ocean. Eng.
27
,
117
129
(
2002
).
7.
T. F.
Duda
,
J. M.
Collis
,
Y-T.
Lin
,
A. E.
Newhall
,
J. F.
Lynch
, and
H. A.
DeFerrari
, “
Horizontal coherence of low-frequency fixed-path sound in a continental shelf region with internal-wave activity
,”
J. Acoust. Soc. Am.
131
,
1782
1797
(
2012
).
8.
H.
Cox
, “
Spatial coherence?
,”
J. Acoust. Soc. Am.
124
,
2522
(
2008
).
9.
S. M.
Flatté
,
R.
Dashen
,
W. H.
Munk
,
K. M.
Watson
, and
F.
Zachariasen
, “
Linear internal waves
,” in
Sound Transmission Through a Fluctuating Ocean
(
Cambridge University Press
,
New York
,
1979
), pp.
44
62
.
10.
D.
Rouseff
, “
Effect of shallow water internal waves on ocean acoustic striation patterns
,”
Waves Random Media
11
,
377
393
(
2001
).
11.
M.
Abromowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
National Bureau of Standards
,
Washington DC
,
1964
), Eq. 23.1.18.
12.
S. A.
Reynolds
and
M. D.
Levine
,
DRI Internal Wave Simulations
, Tech. Memorandum APL-UW TM 5–04 (
Applied Physics Laboratory
,
Seattle
,
2005
).
13.
F. S.
Henyey
,
D.
Rouseff
,
J. M.
Grochocinski
,
S. A.
Reynolds
,
K. L.
Williams
, and
T. E.
Ewart
, “
Effect of internal waves and turbulence on a horizontal aperture sonar
,”
IEEE J. Ocean. Eng.
22
,
270
280
(
1997
).
14.
M. D.
Levine
, “
A modification of the Garrett-Munk internal wave spectrum
,”
J. Phys. Ocean.
32
,
3166
3182
(
2002
).
15.
W. A.
Kuperman
and
D. R.
Jackson
, “
Ocean acoustics, matched-field processing and phase conjugation
,”
Imag. Complex Media Acoust. Seismic Waves Top. Appl. Phys.
84
,
43
96
(
2002
).
16.
W. H.
Munk
, “
A survey of internal waves and small-scale processes
,” in
Evolution of Physical Oceanography
, edited by
B. A.
Warren
and
C.
Wunch
(
MIT
,
Cambridge, MA
,
1981
).
17.
T. C.
Yang
and
K.
Yoo
, “
Internal wave spectrum in shallow water: Measurement and comparison with the Garrett–Munk model
,”
IEEE J. Ocean. Eng.
24
,
333
345
(
1999
).
18.
J.
Yang
,
S.
Zhou
,
J. X.
Zhou
, and
J. F.
Lynch
, “
Internal wave characteristics at the ASIAEX site in the east China Sea
,”
IEEE J. Ocean. Eng.
29
,
1054
1060
(
2004
).
19.
D.
Rouseff
and
D.
Tang
, “
Internal wave effects on the ambient noise notch in the East China Sea: Model/data comparison
,”
J. Acoust. Soc. Am.
120
,
1284
1294
(
2006
).
20.
S.
Kim
,
W. A.
Kuperman
,
W. S.
Hodgkiss
,
H. C.
Song
,
G. F.
Edelmann
, and
T.
Akal
, “
Robust time reversal focusing in the ocean
,”
J. Acoust. Soc. Am.
114
,
145
157
(
2003
).
21.
K. L.
Williams
,
F. S.
Henyey
,
D.
Rouseff
,
S. A.
Reynolds
, and
T. E.
Ewart
, “
Internal wave effects on high-frequency acoustic propagation to horizontal arrays—experiments and implications to imaging
,”
IEEE J. Ocean. Eng.
26
,
102
112
(
2001
).
22.
B. G.
Katsnelson
,
V. G.
Petnikov
, and
J. F.
Lynch
,
Fundamentals of Shallow Water Acoustics
(
Springer
,
New York
,
2012
), p.
124
.
23.
M.
Badiey
,
B. G.
Katsnelson
,
J. F.
Lynch
, and
S.
Pereselkov
, “
Frequency dependence and intensity fluctuations due to shallow water internal waves
,”
J. Acoust. Soc. Am.
122
,
747
760
(
2007
).
24.
F. B.
Jensen
,
W. A.
,
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
, “
Normal modes
,” in
Computational Ocean Acoustics
, 2nd ed. (
Springer
,
New York
,
2011
), pp.
337
455
.
25.
S. D.
Rajan
,
J. F.
Lynch
, and
G. V.
Frisk
, “
Perturbative inversion methods for obtaining bottom geoacoustic parameters in shallow water
,”
J. Acoust. Soc. Am.
82
,
998
1017
(
1987
).
26.
D. E.
Weston
and
K. J.
Stevens
, “
Interference of wide-band sound in shallow water
,”
J. Sound Vib.
21
,
57
64
(
1972
).
27.
V.
Petukhov
, “
Fundamental directions of investigations of interference phenomena observed in the propagation of broadband acoustic signals in oceanic waveguides (review of publications by Russian scientists)
,” in
Ocean Acoustic Interference Phenomena and Signal Processing
, edited by
W. A.
Kuperman
and
G. L.
D'Spain
(
AIP
,
New York
,
2002
), pp.
3
10
.
28.
Y. S.
Shifrin
,
Statistical Antenna Theory
(
Golem
,
Boulder, CO
,
1971
), pp.
30
38
.
29.
A.
Ishimaru
,
Wave Propagation and Scattering in Random Media
(
Academic
,
New York
,
1978
), p.
356
.
30.
E. P.
Gulin
and
Yu. P.
Lysanov
, “
Soviet and Russian studies of underwater sound scattering and acoustic signal fluctuations
,” in
History of Russian Underwater Acoustics
, edited by
O. A.
Godin
and
D. R.
Palmer
(
World Scientific Publishing
,
Hackensack, NJ
,
2008
), pp.
121
196
.
31.
F. S.
Henyey
, “
Sound through internal waves: Difficult cases
,” in
Proceedings of ‘Aha Huliko’a Hawaiian Winter Workshop
(
1997
), pp.
175
180
.
32.
A. A.
Lunkov
and
V. G.
Petnikov
, “
The coherence of low-frequency sound in shallow water in the presence of internal waves
,”
Acoust. Phys.
60
,
61
71
(
2014
).
33.
D. B.
Creamer
, “
Scintillating shallow-water waveguides
,”
J. Acoust. Soc Am.
99
,
2825
2838
(
1996
).
34.
K. B.
Winters
and
E. A.
D'Asaro
, “
Direct simulation of internal wave energy transfer
,”
J. Phys. Oceanogr.
27
,
1937
1945
(
1997
).
35.
F. S.
Henyey
and
S. A.
Reynolds
, “
A numerical simulator of ocean internal waves for long-range acoustics
,” Technical Memorandum APL-UW TM 1–13 (March
2013
).
36.
D. J.
Tang
,
J. N.
Moum
,
J. F.
Lynch
,
P.
Abbot
,
R.
Chapman
,
P. H.
Dahl
,
T. F.
Duda
,
G.
Gawarkiewicz
,
S.
Glenn
,
J. A.
Goff
,
H.
Graber
,
J.
Kemp
,
A.
Maffei
,
J. D.
Nash
, and
A.
Newhall
, “
Shallow Water'06: A Joint Acoustic Propagation/Nonlinear Internal Wave Physics Experiment
,”
Oceanography
20
,
156
167
(
2007
).
37.
A. E.
Newhall
,
T. F.
Duda
,
K.
von der Heydt
,
J. D.
Irish
,
J. N.
Kemp
,
S. A.
Lerner
,
Y-T.
Lin
,
J. F.
Lynch
,
A. R.
Maffei
,
A. K.
Morozov
,
A. A.
Shmelev
,
C. J.
Sellers
, and
W. E.
Witzell
, “
Acoustic and oceanographic observations and configuration information for the WHOI moorings from the SW06 experiment
,”
Technical Report WHOI-2007–04
(URI: http://hdl.handle.net/1912/1826) (May
2007
).
38.
V. M.
Kuz'kin
,
Y-T.
Lin
,
A. A.
Lunkov
,
J. F.
Lynch
, and
V. G.
Petnikov
, “
Frequency shifts of the sound field interference pattern on oceanic shelf in summer conditions
,”
Acoust. Phys.
57
,
381
390
(
2011
).
39.
M. H.
Orr
,
B. H.
Pasewark
,
S. N.
Wolf
,
J. F.
Lynch
,
T.
Schroeder
, and
C-S.
Chiu
, “
South China Sea internal tide/internal waves—impact on the temporal variability of horizontal array gain at 276 Hz
,”
IEEE J. Ocean. Eng.
29
,
1292
1307
(
2004
).
40.
R. H.
Headrick
,
J. F.
Lynch
,
J. N.
Kemp
,
A. E.
Newhall
,
K.
von der Heydt
,
J.
Apel
,
M.
Badiey
,
C-S.
Chiu
,
S.
Finette
,
M.
Orr
,
B.
Pasewark
,
A.
Turgot
,
S.
Wolf
, and
D.
Tielbuerger
, “
Modeling mode arrivals in the 1995 SWARM experiment acoustic transmissions
,”
J. Acoust. Soc. Am.
107
,
221
236
(
2000
).
You do not currently have access to this content.