For a sound field observed on a sensor array, compressive sensing (CS) reconstructs the direction of arrival (DOA) of multiple sources using a sparsity constraint. The DOA estimation is posed as an underdetermined problem by expressing the acoustic pressure at each sensor as a phase-lagged superposition of source amplitudes at all hypothetical DOAs. Regularizing with an 1-norm constraint renders the problem solvable with convex optimization, and promoting sparsity gives high-resolution DOA maps. Here the sparse source distribution is derived using maximum a posteriori estimates for both single and multiple snapshots. CS does not require inversion of the data covariance matrix and thus works well even for a single snapshot where it gives higher resolution than conventional beamforming. For multiple snapshots, CS outperforms conventional high-resolution methods even with coherent arrivals and at low signal-to-noise ratio. The superior resolution of CS is demonstrated with vertical array data from the SWellEx96 experiment for coherent multi-paths.

1.
M.
Elad
,
Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing
(
Springer
,
New York
,
2010
), pp.
1
359
.
2.
S.
Foucart
and
H.
Rauhut
,
A Mathematical Introduction to Compressive Sensing
(
Springer
,
New York
,
2013
), pp.
1
589
.
3.
D.
Malioutov
,
M.
Çetin
, and
A. S.
Willsky
, “
A sparse signal reconstruction perspective for source localization with sensor arrays
,”
IEEE Trans. Signal Process.
53
(
8
),
3010
3022
(
2005
).
4.
A.
Xenaki
,
P.
Gerstoft
, and
K.
Mosegaard
, “
Compressive beamforming
,”
J. Acoust. Soc. Am.
136
(
1
),
260
271
(
2014
).
5.
A.
Xenaki
and
P.
Gerstoft
, “
Grid-free compressive beamforming
,”
J. Acoust. Soc. Am.
137
,
1923
1935
(
2015
).
6.
H.
Krim
and
M.
Viberg
, “
Two decades of array signal processing research: The parametric approach
,”
IEEE Signal Proc. Mag.
13
(
4
),
67
94
(
1996
).
7.
H. L.
Van Trees
,
Optimum Array Processing (Detection, Estimation, and Modulation Theory, Part IV)
(
Wiley-Interscience
,
New York
,
2002
), Chap.
1
10
.
8.
R.
Schmidt
, “
Multiple emitter location and signal parameter estimation
,”
IEEE Trans. Antennas Propag.
34
(
3
),
276
280
(
1986
).
9.
G. F.
Edelmann
and
C. F.
Gaumond
, “
Beamforming using compressive sensing
,”
J. Acoust. Soc. Am.
130
(
4
),
EL232
EL237
(
2011
).
10.
C. F.
Mecklenbräuker
,
P.
Gerstoft
,
A.
Panahi
, and
M.
Viberg
, “
Sequential Bayesian sparse signal reconstruction using array data
,”
IEEE Trans. Signal Process.
61
(
24
),
6344
6354
(
2013
).
11.
S.
Fortunati
,
R.
Grasso
,
F.
Gini
,
M. S.
Greco
, and
K.
LePage
, “
Single-snapshot DOA estimation by using compressed sensing
,”
EURASIP J. Adv. Signal Process.
120
(
1
),
1
17
(
2014
).
12.
R.
Tibshirani
, “
Regression shrinkage and selection via the lasso
,”
J. R. Statist. Soc. Ser. B
58
(
1
),
267
288
(
1996
).
13.
D.
Wipf
and
B.
Rao
, “
An empirical bayesian strategy for solving the simultaneous sparse approximation problem
,”
IEEE Trans. Signal Process.
55
(
7
),
3704
3716
(
2007
).
14.
W.
Mantzel
,
J.
Romberg
, and
K.
Sabra
, “
Compressive matched-field processing
,”
J. Acoust. Soc. Am.
132
(
1
),
90
102
(
2012
).
15.
P. A.
Forero
and
P. A.
Baxley
, “
Shallow-water sparsity-cognizant source-location mapping
,”
J. Acoust. Soc. Am.
135
(
6
),
3483
3501
(
2014
).
16.
C.
Yardim
,
P.
Gerstoft
,
W. S.
Hodgkiss
, and
J.
Traer
, “
Compressive geoacoustic inversion using ambient noise
,”
J. Acoust. Soc. Am.
135
(
3
),
1245
1255
(
2014
).
17.
Y.
Chi
,
L. L.
Scharf
,
A.
Pezeshki
, and
A. R.
Calderbank
, “
Sensitivity to basis mismatch in compressed sensing
,”
IEEE Trans. Signal Process.
59
(
5
),
2182
2195
(
2011
).
18.
E. J.
Candes
and
C.
Fernandez-Granda
, “
Super-resolution from noisy data
,”
J. Fourier Anal. Appl.
19
,
1229
1254
(
2013
).
19.
M. F.
Duarte
and
R. G.
Baraniuk
, “
Spectral compressive sensing
,”
Appl. Comput. Harmon. Anal.
35
(
1
),
111
129
(
2013
).
20.
H.
Yao
,
P.
Gerstoft
,
P. M.
Shearer
, and
C.
Mecklenbräuker
, “
Compressive sensing of the Tohoku-Oki Mw 9.0 earthquake: Frequency-dependent rupture modes
,”
Geophys. Res. Lett.
38
(
20
),
1
5
, doi: (
2011
).
21.
H.
Yao
,
P. M.
Shearer
, and
P.
Gerstoft
, “
Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures
,”
Proc. Natl. Acad. Sci. U.S.A.
110
(
12
),
4512
4517
(
2013
).
22.
W.
Fan
,
P. M.
Shearer
, and
P.
Gerstoft
, “
Kinematic earthquake rupture inversion in the frequency domain
,”
Geophys. J. Int.
199
(
2
),
1138
1160
(
2014
).
23.
M.
Yuan
and
Y.
Lin
, “
Efficient empirical bayes variable selection and estimation in linear models
,”
J. Am. Statist. Assoc.
100
(
472
),
1215
1225
(
2005
).
24.
T.
Park
and
G.
Casella
, “
The Bayesian lasso
,”
J. Am. Statist. Assoc.
103
(
482
),
681
686
(
2008
).
25.
R.
Tibshirani
and
J.
Taylor
, “
The solution path of the generalized lasso
,”
Ann. Stat.
39
(
3
),
1335
1371
(
2011
).
26.
A.
Panahi
and
M.
Viberg
, “
Fast candidate points selection in the lasso path
,”
IEEE Signal Proc. Lett.
19
(
2
),
79
82
(
2012
).
27.
E. J.
Candès
and
M. B.
Wakin
, “
An introduction to compressive sampling
,”
IEEE Signal Proc. Mag.
25
(
2
),
21
30
(
2008
).
28.
R. G.
Baraniuk
, “
Compressive sensing
,”
IEEE Signal Proc. Mag.
24
(
4
),
118
121
(
2007
).
29.
M.
Grant
and
S.
Boyd
, CVX: matlab software for disciplined convex programming, Version 2.1. http://cvxr.com/cvx (Last viewed March 9,
2015
).
30.
M.
Grant
and
S.
Boyd
, “
Graph implementations for nonsmooth convex programs
,” in
Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences
, edited by
V.
Blondel
,
S.
Boyd
, and
H.
Kimura
(
Springer-Verlag
,
London
,
2008
), pp.
95
110
.
31.
S.
Boyd
and
L.
Vandenberghe
,
Convex Optimization
(
Cambridge University Press
,
New York
,
2004
), pp.
1
684
.
32.
Z.
He
,
S.
Xie
,
S.
Ding
, and
A.
Cichocki
, “
Convolutive blind source separation in the frequency domain based on sparse representation
,”
IEEE Trans. Audio Speech Language Proc.
15
(
5
),
1551
1563
(
2007
).
33.
S. F.
Cotter
,
B. D.
Rao
,
K.
Engan
, and
K.
Kreutz-Delgado
, “
Sparse solutions to linear inverse problems with multiple measurement vectors
,”
IEEE Trans Signal Proc.
53
,
2477
2488
(
2005
).
34.
E.
Ollila
, “
Multichannel sparse recovery of complex-valued signals using Huber's criterion
,” in
2015 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar, and Remote Sensing (CoSeRa)
,
Pisa, Italy
(
>June 17–19, 2015
), pp.
1
4
.
35.
C. F.
Mecklenbräuker
,
P.
Gerstoft
, and
E.
Zöchmann
, “
Using the LASSO's dual for regularization in sparse signal reconstruction from array data
,” arxiv.org/abs/1502.04643 (
2015
).
36.
R.
Tibshirani
,
M.
Saunders
,
S.
Rosset
,
J.
Zhu
, and
K.
Knight
, “
Sparsity and smoothness via the fused lasso
,”
J. R. Statist. Soc. Ser. B
67
(
1
),
91
108
(
2005
).
37.
N. O.
Booth
,
P. A.
Baxley
,
J. A.
Rice
,
P. W.
Schey
,
W. S.
Hodgkiss
,
G. L.
D'Spain
, and
J. J.
Murray
, “
Source localization with broad-band matched-field processing in shallow water
,”
IEEE J. Ocean. Eng.
21
(
4
),
402
412
(
1996
).
38.
G. L.
D'Spain
,
J. J.
Murray
,
W. S.
Hodgkiss
,
N. O.
Booth
, and
P. W.
Schey
, “
Mirages in shallow water matched field processing
,”
J. Acoust. Soc. Am.
105
(
6
),
3245
3265
(
1999
).
You do not currently have access to this content.