To clarify fluid–acoustic interactions in an actual recorder with opened and closed tone holes, flow and acoustic fields were directly numerically simulated on the basis of the compressible Navier–Stokes equations. To validate the simulation accuracy, the flow field around the windway and sound pressure above the window were measured. The predicted acoustic fields clarify changes of the positions of pressure nodes and anti-nodes in accordance with the state of the tone holes and the Mach number of the jet velocity. The fundamental mechanism of the self-sustained oscillations in a three-dimensional actual recorder is visualized by the predicted acoustic and flow fields. This result is also consistent with the relationship between the jet behaviors and pressure fluctuations based on the jet-drive model. Moreover, the effects of the fine vortices in the jet, which appear at the high Mach number of jet velocity of 0.099, on the sound are discussed. The time difference between the generation of the disturbances and the most intense deflection of the jet is identified and compared with the time delay of acoustic reflection around the window.

1.
B.
Fabre
,
J.
Gilbert
,
A.
Hirschberg
, and
X.
Pelorson
, “
Aeroacoustics of musical instruments
,”
Annu. Rev. Fluid Mech.
44
,
1
25
(
2012
).
2.
H.
von Helmholtz
,
On the Sensation of Tones
, translated by
A. J.
Ellis
(
Dover
,
New York
,
1954
), pp.
88
94
.
3.
Lord
Rayleigh (J. W. Strutt)
,
The Theory of Sound
(
Dover
,
New York
,
1945
), Vol.
2
, Chap. 21.
4.
J. W.
Coltman
, “
Jet drive mechanism in edge tones and organ pipes
,”
J. Acoust. Soc. Am.
60
,
725
733
(
1976
).
5.
M. P.
Verge
,
R.
Causse
,
B.
Fabre
,
A.
Hirschberg
,
A. P. J.
Wijnands
, and
A.
van Steenbergen
, “
Jet oscillations and jet drive in recorder-like instruments
,”
Acustica
2
,
403
419
(
1994
).
6.
M. P.
Verge
,
B.
Fabre
,
A.
Hirschberg
, and
A. P. J.
Wijnands
, “
Sound production in recorder-like instrument. I. Dimensionless amplitude of the internal acoustic field
,”
J. Acoust. Soc. Am.
101
,
2914
2924
(
1997
).
7.
M. P.
Verge
,
A.
Hirschberg
, and
R.
Causse
, “
Sound production in recorderlike instruments. II. A simulation model
,”
J. Acoust. Soc. Am.
101
(
5
),
2925
2939
(
1997
).
8.
B.
Fabre
and
A.
Hirscherg
, “
Physical modeling of flue instruments: A review of lumped models
,”
Acust. Acta Acust.
86
(
4
),
599
610
(
2000
).
9.
M.
Meissner
, “
Aerodynamically excited acoustic oscillations in cavity resonator exposed to an air jet
,”
Acust. Acta Acust.
88
,
170
180
(
2002
).
10.
S.
Dequand
,
J. F. H.
Willems
,
M.
Leroux
,
R.
Vullings
,
M.
van Weert
,
C.
Thieulot
, and
A.
Hirschberg
, “
Simplified models of the instruments: Influence of mouth geometry on the sound source
,”
J. Acoust. Soc. Am.
113
(
3
),
1724
1735
(
2003
).
11.
J. W.
Coltman
, “
Momentum transfer in jet excitation of flute-like instruments
,”
J. Acoust. Soc. Am.
69
(
4
),
1164
1168
(
1981
).
12.
A.
Powell
, “
Theory of vortex sound
,”
J. Acoust. Soc. Am.
36
,
177
195
(
1964
).
13.
M. S.
Howe
, “
Contributions to the theory of aerodynamic sound with application to excess jet noise and the theory of the flue
,”
J. Fluid Mech.
71
,
625
673
(
1975
).
14.
B.
Fabre
,
A.
Hirschberg
, and
A. P. J.
Wijnands
, “
Vortex shedding in steady oscillation of a flue organ pipe
,”
Acust. Acta Acust.
82
,
863
877
(
1996
).
15.
S.
Yoshikawa
,
H.
Tashiro
, and
Y.
Sakamoto
, “
Experimental examination of vortex-sound generation in an organ pipe: A proposal of jet vortex-layer formation model
,”
J. Sound Vib.
331
,
2558
2577
(
2012
).
16.
L.
Cremer
and
H.
Ising
, “
Die selbsterregten Schwingungen von Orgelpfeifen
” (“The self-sustained vibrations of organ pipes”),
Acustica
19
(
3
),
143
153
(
1967
).
17.
N. H.
Fletcher
, “
Sound production by organ flue pipes
,”
J. Acoust. Soc. Am
60
(
4
),
926
936
(
1976
).
18.
S.
Yoshikawa
and
J.
Saneyoshi
, “
Feedback excitation mechanism in organ pipes
,”
J. Acoust. Soc. Jpn. (E)
1
,
175
191
(
1980
).
19.
J. W.
Coltman
, “
Jet behavior in the flute
,”
J. Acoust. Soc. Am.
92
(
1
),
74
83
(
1992
).
20.
A. H.
Benade
, “
Measured end corrections for woodwind tone holes
,”
J. Acoust. Soc. Am.
41
,
1609
(
1967
).
21.
D. H.
Keefe
, “
Theory of the single woodwind tone hole
,”
J. Acoust. Soc. Am.
72
(
3
),
676
687
(
1982
).
22.
J.-P.
Dalmont
,
C. J.
Nederveen
, and
N.
Joly
, “
Radiation Impedance of tubes with different flanges: Numerical and experimental investigations
,”
J. Sound Vib.
244
(
3
),
505
534
(
2001
).
23.
C.
Segoufin
,
B.
Fabre
,
M. P.
Verge
,
A.
Hirschberg
, and
A. P. J.
Wijnands
, “
Experimental study of the influence of the mouth geometry on sound production in a recorder-like instrument: Windway length and chamfers
,”
Acust. Acta Acust.
86
,
649
661
(
2000
).
24.
R.
Auvray
,
B.
Fabre
, and
P.
Kagree
, “
Regime change and oscillation thresholds in recorder-like instruments
,”
J. Acoust. Soc. Am.
131
(
2
),
1574
1585
(
2012
).
25.
N.
Giordano
, “
Simulation studies of a recorder in three dimensions
,”
J. Acoust. Soc. Am.
135
(
2
),
906
916
(
2014
).
26.
N.
Bak
, “
Pitch, temperature and blowing pressure in recorder playing study of treble recorders
,”
Acustica
22
,
296
299
(
1969
).
27.
M.
Miyamoto
,
Y.
Ito
,
T.
Iwasaki
,
T.
Akamura
,
K.
Takahashi
,
T.
Takami
,
T.
Kobayashi
,
A.
Nishida
, and
M.
Aoyagi
, “
Numerical study on acoustic oscillations of 2D and 3D flue organ pipe like instruments with compressible LES
,”
Acust. Acta Acust.
99
,
154
171
(
2013
).
28.
S. K.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
42
(
1992
).
29.
P.
Angot
,
C. H.
Bruneau
, and
P.
Frabrie
, “
A penalization method to take into account obstacles in viscous flows
,”
Numer. Math.
81
,
497
520
(
1999
).
30.
Q.
Liu
and
O. V.
Vasilyev
, “
A Brinkman penalization method for compressible flows in complex geometries
,”
J. Comp. Phys.
227
,
946
966
(
2007
).
31.
R.
Mittal
and
G.
Iaccarino
, “
Immersed boundary methods
,”
Annu. Rev. Fluid Mech.
37
,
239
261
(
2005
).
32.
D. P.
Rizzetta
and
M. R.
Visbal
, “
Large-Eddy simulation of supersonic cavity flow fields including flow control
,”
AIAA J.
41
,
1452
1462
(
2003
).
33.
C.
Bogey
and
C.
Bailly
, “
Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model
,”
Int. J. Heat Fluid Flow
27
,
603
610
(
2006
).
34.
K.
Matsuura
and
C.
Kato
, “
Large–eddy simulation of compressible transitional flows in a low-pressure turbine cascade
,”
AIAA J.
45
,
442
457
(
2007
).
35.
C.
Bogey
and
C.
Bailly
, “
Turbulence and energy budget in a self-preserving round jet: Direct evaluation using large eddy simulation
,”
J. Fluid Mech.
627
,
129
160
(
2009
).
36.
H.
Yokoyama
and
C.
Kato
, “
Fluid-acoustic interactions in self-sustained oscillations in turbulent cavity flows, I. Fluid-dynamic oscillations
,”
Phys. Fluids
21
,
105103
(
2009
).
37.
H.
Yokoyama
,
K.
Kitamiya
, and
A.
Iida
, “
Flows around a cascade of flat plates with acoustic resonance
,”
Phys. Fluids
25
(
10
),
106104
(
2013
).
38.
D. V.
Gaitonde
and
M. R.
Visbal
, “
Pade-type higher-order boundary filters for the Navier-Stokes equations
,”
AIAA J.
38
,
2103
2112
(
2000
).
39.
K. W.
Thompson
, “
Time dependent boundary conditions for hyperbolic systems
,”
J. Comput. Phys.
68
,
1
24
(
1987
).
40.
T. J.
Poinsot
and
S. K.
Lele
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comput. Phys.
101
,
104
129
(
1992
).
41.
J. W.
Kim
and
D. J.
Lee
, “
Generalized characteristic boundary conditions for computational aeroacoustics
,”
AIAA J.
38
(
11
),
2040
2049
(
2000
).
42.
A. H.
Benade
, “
On woodwind instrument bores
,”
J. Acoust. Soc. Am.
31
(
2
),
137
146
(
1959
).
43.
A. H.
Benade
, “
On the mathematical theory of woodwind finger holes
,”
J. Acoust. Soc. Am.
32
(
12
),
1591
1608
(
1960
).
44.
J. W.
Coltman
, “
Sounding mechanism of the flute and organ pipe
,”
J. Acoust. Soc. Am.
44
(
4
),
983
992
(
1968
).
45.
G.
Kooijman
,
A.
Hirschberg
, and
J.
Golliard
, “
Acoustical response of orifices under grazing flow: Effect of boundary layer profile and edge geometry
,”
J. Sound Vib.
315
,
849
874
(
2008
).
46.
H. R.
Graf
and
S.
Ziada
, “
Excitation source of a side-branch shear layer
,”
J. Sound Vib.
329
,
2825
2842
(
2010
).
47.
D.
Tonon
,
A.
Hirschberg
,
J.
Golliard
, and
S.
Ziada
, “
Aeroacoustics of pipe systems with closed branches
,”
Int. J. Aeroacoust.
10
(
2–3
),
201
276
(
2011
).
You do not currently have access to this content.