In this study, radiation impedance of a capacitive micromachined ultrasonic transducer composed of square-shaped membranes arranged in m × m configuration (m = 1 − 5) is investigated using finite element analysis (FEA) of a commercially available software package(ANSYS). Radiation impedance is calculated for immersed membranes operating in conventional and collapse modes. Individual membrane response within the multi-membrane configuration is analyzed, and excited modes and their effects on radiation impedance and the pressure spectra are reported. This FEA provides an accurate behavior of the acoustic coupling of a thin membrane in a multi-membrane configuration, and extends above the anti-resonance frequency. The first resonance frequency of the membrane is excited for m × m (m ≥ 3) configuration in conventional mode and for m × m (m ≥ 2) configuration in collapse mode. Therefore, this frequency is determined to be responsible for the adverse effects observed in radiation impedance and pressure spectrum. A membrane configuration, which is missing the central membrane from the full m × m configuration is proposed, and is investigated with the FEA. This study is beneficial for the design of precise transducers suited for biomedical applications.

1.
B. T.
Khuri-Yakub
and
O.
Oralkan
, “
Capacitive micromachined ultrasonic transducers for medical imaging and therapy
,”
J. Micromech. Microeng.
21
(
5
),
54004
540015
(
2011
).
2.
A.
Ozgurluk
,
A.
Atalar
,
H.
Koymen
, and
S.
Olcum
, “
Radiation impedance of an array of circular capacitive micromachined ultrasonic transducers in collapsed state
,” in
Proceedings of IEEE Ultrasonics Symposium
(
2011
), pp.
562
565
.
3.
A.
Bozkurt
, “
A lumped-circuit model for the radiation impedance of a circular piston in a rigid baffle
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
55
(
9
),
2046
2052
(
2008
).
4.
M. N.
Senlik
,
S.
Olcum
,
H.
Köymen
, and
A.
Atalar
, “
Radiation impedance of an array of circular capacitive micromachined ultrasonic transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
(
4
),
969
976
(
2010
).
5.
B.
Bayram
,
E.
Hæggström
,
A. S.
Ergun
,
G. G.
Yaralioglu
, and
B. T.
Khuri-Yakub
, “
Dynamic analysis of CMUTs in different regimes of operation
,” in
Proceedings of IEEE Ultrasonics Symposium
(
2003
), pp.
481
484
.
6.
B.
Bayram
,
G. G.
Yaralioglu
,
A. S.
Ergun
,
O.
Oralkan
, and
B. T.
Khuri-Yakub
, “
Dynamic FEM analysis of multiple CMUT cells in immersion
,” in
Proceedings of IEEE Ultrasonics Symposium
(
2004
), pp.
252
255
.
7.
C.
Meynier
,
F.
Teston
, and
D.
Certon
, “
A multiscale model for array of capacitive micromachined ultrasonic transducers
,”
J. Acoust. Soc. Am.
128
(
5
),
2549
2561
(
2010
).
8.
B.
Bayram
,
G. G.
Yaralioglu
,
M.
Kupnik
,
A. S.
Ergun
,
Ö.
Oralkan
,
A.
Nikoozadeh
, and
B. T.
Khuri-Yakub
, “
Dynamic analysis of capacitive micromachined ultrasonic transducers
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
(
12
),
2270
2275
(
2005
).
9.
B.
Bayram
,
Ö.
Oralkan
,
A. S.
Ergun
,
E.
Hæggström
,
G. G.
Yaralioglu
, and
B. T.
Khuri-Yakub
, “
Capacitive micromachined ultrasonic transducer design for high power transmission
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
52
(
2
),
326
339
(
2005
).
10.
A.
Caronti
,
A.
Savoia
,
G.
Caliano
, and
M.
Pappalardo
, “
Acoustic coupling in capacitive microfabricated ultrasonic transducers: Modeling and experiments
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
52
(
12
),
2220
2234
(
2005
).
11.
B.
Bayram
,
M.
Kupnik
,
G. G.
Yaralioglu
,
Ö.
Oralkan
,
A. S.
Ergun
,
D. S
Lin
,
S. H.
Wong
, and
B. T.
Khuri-Yakub
, “
Finite element modeling and experimental characterization of crosstalk in 1-D CMUT arrays
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
54
(
2
),
418
430
(
2007
).
12.
A.
Bozkurt
and
M.
Karaman
, “
A lumped circuit model for the radiation impedance of a 2-D CMUT array element
,” in
Proceedings of IEEE Ultrasonics Symposium
(
2005
), pp.
1929
1932
.
13.
K. K.
Park
,
M.
Kupnik
,
H. J.
Lee
,
I. O.
Wygant
, and
B. T.
Khuri-Yakub
, “
Modeling and measuring the effects of mutual impedance on multi-cell CMUT configurations
,” in
Proceedings of IEEE Ultrasonics Symposium
(
2010
), pp.
431
434
.
14.
B.
Bayram
, “
Diamond-based capacitive micromachined ultrasonic transducers
,”
Diamond Relat. Mater.
22
(
2
),
6
11
(
2012
).
15.
A. M.
Cetin
and
B.
Bayram
, “
Diamond-based capacitive micromachined ultrasonic transducers in immersion
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
60
,
414
420
(
2013
).
16.
B.
Bayram
,
E.
Hæggström
,
G. G.
Yaralioglu
, and
B. T.
Khuri-Yakub
, “
A new regime for operating capacitive micromachined ultrasonic transducers
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
50
,
1184
1190
2003
.
17.
M.
Greenspan
, “
Piston radiator: Some extensions of the theory
,”
J. Acoust. Soc. Am.
65
(
3
),
608
621
(
1979
).
18.
ANSYS 15.0 manual, Ansys Inc., Canonsburg, PA.
You do not currently have access to this content.