Recent measurements of shear wave propagation in viscoelastic materials have been analyzed by constructing the two-dimensional Fourier transform (2D-FT) of the spatial-temporal shear wave signal and using an analysis procedure derived under the assumption the wave is described as a plane wave, or as the asymptotic form of a wave expanding radially from a cylindrically symmetric source. This study presents an exact, analytic expression for the 2D-FT description of shear wave propagation in viscoelastic materials following asymmetric Gaussian excitations and uses this expression to evaluate the bias in 2D-FT measurements obtained using the plane or cylindrical wave assumptions. A wide range of biases are observed depending on specific values of frequency, aspect ratio R of the source asymmetry, and material properties. These biases can be reduced significantly by weighting the shear wave signal in the spatial domain to correct for the geometric spreading of the shear wavefront using a factor of xp. The optimal weighting power p is found to be near the theoretical value of 0.5 for the case of a cylindrical source with R = 1, and decreases for asymmetric sources with R > 1.

1.
A. P.
Sarvazyan
,
O. V.
Rudenko
,
S. D.
Swanson
,
J. B.
Fowlkes
, and
S. Y.
Emelianov
, “
Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics
,”
Ultrasound Med. Biol.
24
,
1419
1435
(
1998
).
2.
K. F.
Graff
,
Wave Motion in Elastic Solids
(
Dover
,
Mineola, NY
,
1991
), Chap. 5.
3.
W. M.
Lai
,
D.
Rubin
, and
E.
Krempl
,
Introduction to Continuum Mechanics
, 4th ed. (
Butterworth-Heinemann
,
Burlington, MA
,
2010
), Chap. 5.
4.
K.
Nightingale
,
S.
McAleavey
, and
G.
Trahey
, “
Shear-wave generation using acoustic radiation force: In vivo and ex vivo results
,”
Ultrasound Med. Biol.
29
,
1715
1723
(
2003
).
5.
J.
Bercoff
,
M.
Tanter
, and
M.
Fink
, “
Supersonic shear imaging: A new technique for soft tissue elasticity mapping
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
,
396
409
(
2004
).
6.
Y. C.
Fung
,
Biomechanics: Mechanical Properties of Living Tissues
, 2nd ed. (
Springer
,
New York
,
1993
), Chap. 2.
7.
S.
Chen
,
M.
Fatemi
, and
J. F.
Greenleaf
, “
Quantifying elasticity and viscosity from measurement of shear wave speed dispersion
,”
J. Acoust. Soc. Am.
115
,
2781
2785
(
2004
).
8.
T.
Deffieux
,
G.
Montaldo
,
M.
Tanter
, and
M.
Fink
, “
Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity
,”
IEEE Trans. Med. Imaging
28
,
313
322
(
2009
).
9.
S.
Catheline
,
J.-L.
Gennisson
,
G.
Delon
,
M.
Fink
,
R.
Sinkus
,
S.
Abouelkaram
, and
J.
Culioli
, “
Measurement of viscoelastic properties of homogeneous soft solid using transient elastography: An inverse problem approach
,”
J. Acoust. Soc. Am.
116
,
3734
3741
(
2004
).
10.
C. T.
Barry
,
Z.
Hah
,
A.
Partin
,
R. A.
Mooney
,
K.-H.
Chuang
,
A.
Augustine
,
A.
Almudevar
,
W.
Cao
,
D. J.
Rubens
, and
K. J.
Parker
, “
Mouse liver dispersion for the diagnosis of early-stage fatty liver disease: A 70-sample study
,”
Ultrasound Med. Biol.
40
,
704
713
(
2014
).
11.
K. R.
Nightingale
,
N. C.
Rouze
,
S. J.
Rosenzweig
,
M. H.
Wang
,
M. F.
Abdelmalek
,
C. D.
Guy
, and
M. L.
Palmeri
, “
Derivation and analysis of viscoelastic properties in human liver: Impact of frequency on fibrosis and steatosis staging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
62
,
165
175
(
2015
).
12.
I.
Nenadic
,
M. W.
Urban
,
B.
Qiang
,
S.
Chen
, and
J.
Greenleaf
, “
Model-free quantification of shear wave velocity and attenuation in tissues and its in vivo application
,”
J. Acoust. Soc. Am.
134
,
4011
(
2013
).
13.
I. Z.
Nenadic
,
M. W.
Urban
,
H.
Zhao
,
W.
Sanchez
,
P. E.
Morgan
,
J. F.
Greenleaf
, and
S.
Chen
, “
Application of attenuation measuring ultrasound shearwave elastography in 8 post-transplant liver patients
,” in
2014 IEEE International Ultrasonics Symposium
(
2014
), pp.
987
990
.
14.
M. H.
Wang
,
M. L.
Palmeri
,
V. M.
Rotemberg
,
N. C.
Rouze
, and
K. R.
Nightingale
, “
Improving the robustness of time-of-flight based shear wave speed reconstruction methods using RANSAC in human liver in vivo
,”
Ultrasound Med. Biol.
36
,
802
813
(
2010
).
15.
M. L.
Palmeri
,
M. H.
Wang
,
N. C.
Rouze
,
M. F.
Abdelmalek
,
C. D.
Guy
,
B.
Moser
,
A. M.
Diehl
, and
K. R.
Nightingale
, “
Noninvasive evaluation of hepatic fibrosis using acoustic radiation force-based shear stiffness in patients with nonalcoholic fatty liver disease
,”
J. Hepatol.
55
,
666
672
(
2011
).
16.
F. W. J.
Olver
, “
Bessel functions of integer order
,” in
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
, edited by
M.
Abramowitz
and
I. A.
Stegun
(
Dover
,
New York
,
1972
), Chap. 9.
17.
A.
Erdélyi
,
Tables of Integral Transforms
(
McGraw-Hill
,
New York
,
1954
), Vol. 1.
18.
D. R.
Bland
,
The Theory of Linear Viscoelasticity
(
Pergamon
,
New York
,
1960
), Chap. 3.
19.
R. M.
Christensen
,
Theory of Viscoelasticity
(
Dover
,
Mineola, NY
,
1982
), Chap. 2.
20.
W. T.
Read
, Jr.
, “
Stress analysis for compressible viscoelastic materials
,”
J. Appl. Phys.
21
,
671
674
(
1950
).
21.
R. D.
Borcherdt
,
Viscoelastic Waves in Layered Media
(
Cambridge University Press
,
Cambridge
,
2009
), Chap. 2.
22.
C. C.
Chao
and
J. D.
Achenbach
, “
A simple viscoelastic analogy for stress waves
,” in
Stress Waves in Anelastic Solids
, edited by
H.
Kolsky
and
W.
Prager
(
Springer
,
Berlin
,
1964
), pp.
222
238
.
23.
R.
Piessens
, “
Hankel transform
,” in
Transforms and Applications Handbook
, 3rd ed., edited by
A. D.
Poularikas
(
CRC
,
Boca Raton, FL
,
2010
), Chap. 9.
24.
R. N.
Bracewell
, “
Strip integration in radio astronomy
,”
Aust. J. Phys.
9
,
198
217
(
1956
).
25.
R. N.
Bracewell
,
The Fourier Transform and Its Applications
, 3rd ed. (
McGraw-Hill
,
Boston
,
2000
), Chap. 13.
26.
S.
Chen
,
W.
Sanchez
,
M. R.
Callstrom
,
B.
Gorman
,
J. T.
Lewis
,
S. O.
Sanderson
,
J. F.
Greenleaf
,
H.
Xie
,
Y.
Shi
,
M.
Pashley
,
V.
Shamdasani
,
M.
Lachman
, and
S.
Metz
, “
Assessment of liver viscoelasticity by using shear waves induced by ultrasound radiation force
,”
Radiology
266
(
3
),
964
970
(
2013
).
27.
S. G.
Johnson
, available from http://ab-initio.mit.edu/Faddeeva (Last viewed 1/26/
2015
).
28.
T.
Deffieux
,
J.-L.
Gennisson
,
J.
Bercoff
, and
M.
Tanter
, “
On the effects of reflected waves in transient shear wave elastography
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
2032
2035
(
2011
).
29.
K. J.
Parker
and
N.
Baddour
, “
The Gaussian shear wave in a dispersive medium
,”
Ultrasound Med. Biol.
40
,
675
684
(
2014
).
30.
N.
Baddour
, “
Multidimensional wave field signal theory: Mathematical foundations
,”
AIP Adv.
1
,
022120
(
2011
).
You do not currently have access to this content.