The mechanisms underlying perceptual adaptation to severely spectrally-distorted speech were studied by training participants to comprehend spectrally-rotated speech, which is obtained by inverting the speech spectrum. Spectral-rotation produces severe distortion confined to the spectral domain while preserving temporal trajectories. During five 1-hour training sessions, pairs of participants attempted to extract spoken messages from the spectrally-rotated speech of their training partner. Data on training-induced changes in comprehension of spectrally-rotated sentences and identification/discrimination of spectrally-rotated phonemes were used to evaluate the plausibility of three different classes of underlying perceptual mechanisms: (1) phonemic remapping (the formation of new phonemic categories that specifically incorporate spectrally-rotated acoustic information); (2) experience-dependent generation of a perceptual “inverse-transform” that compensates for spectral-rotation; and (3) changes in cue weighting (the identification of sets of acoustic cues least affected by spectral-rotation, followed by a rapid shift in perceptual emphasis to favour those cues, combined with the recruitment of the same type of “perceptual filling-in” mechanisms used to disambiguate speech-in-noise). Results exclusively support the third mechanism, which is the only one predicting that learning would specifically target temporally-dynamic cues that were transmitting phonetic information most stably in spite of spectral-distortion. No support was found for phonemic remapping or for inverse-transform generation.

1.
Allen
,
J. B.
(
2005
). “
Consonant recognition and the articulation index
,”
J. Acoust. Soc. Am.
117
,
2212
2223
.
2.
Azadpour
,
M.
, and
Balaban
,
E.
(
2008
). “
Phonological representations are unconsciously used when processing complex, non-speech signals
,”
PLoS One
3
,
e1966
.
3.
Azadpour
,
M.
,
McKay
,
C. M.
, and
Smith
,
R. L.
(
2014
). “
Estimating confidence intervals for information transfer analysis of confusion matrices
,”
J. Acoust. Soc. Am.
135
,
EL140
EL146
.
4.
Blesser
,
B.
(
1969
). “
Perception of spectrally rotated speech
,” Ph.D. dissertation,
Massachusetts Institute of Technology
,
Cambridge, MA
.
5.
Blesser
,
B.
(
1972
). “
Speech perception under conditions of spectral transformation. I. Phonetic characteristics
,”
J. Speech Hear. Res.
15
,
5
41
.
6.
Boothroyd
,
A.
, and
Nittrouer
,
S.
(
1988
). “
Mathematical treatment of context effects in phoneme and word recognition
,”
J. Acoust. Soc. Am.
84
,
101
114
.
7.
Cooke
,
M.
(
2006
). “
A glimpsing model of speech perception in noise
,”
J. Acoust. Soc. Am.
119
,
1562
1573
.
8.
Davis
,
M. H.
, and
Johnsrude
,
I. S.
(
2007
). “
Hearing speech sounds: Top-down influences on the interface between audition and speech perception
,”
Hear. Res.
229
,
132
147
.
9.
Davis
,
M. H.
,
Johnsrude
,
I. S.
,
Hervais-Adelman
,
A.
,
Taylor
,
K.
, and
McGettigan
,
C.
(
2005
). “
Lexical information drives perceptual learning of distorted speech: Evidence from the comprehension of noise-vocoded sentences
,”
J. Exp. Psychol. Gen.
134
,
222
241
.
10.
Diaz
,
B.
,
Baus
,
C.
,
Escera
,
C.
,
Costa
,
A.
, and
Sebastian-Galles
,
N.
(
2008
). “
Brain potentials to native phoneme discrimination reveal the origin of individual differences in learning the sounds of a second language
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
16083
16088
.
11.
Erb
,
J.
,
Henry
,
M. J.
,
Eisner
,
F.
, and
Obleser
,
J.
(
2012
). “
Auditory skills and brain morphology predict individual differences in adaptation to degraded speech
,”
Neuropsychologia
50
,
2154
2164
.
12.
Fu
,
Q. J.
, and
Shannon
,
R. V.
(
1999
). “
Recognition of spectrally degraded and frequency-shifted vowels in acoustic and electric hearing
,”
J. Acoust. Soc. Am.
105
,
1889
1900
.
13.
Green
,
T.
,
Rosen
,
S.
,
Faulkner
,
A.
, and
Paterson
,
R.
(
2013
). “
Adaptation to spectrally-rotated speech
,”
J. Acoust. Soc. Am.
134
,
1369
1377
.
14.
Greenspan
,
S. L.
,
Nusbaum
,
H. C.
, and
Pisoni
,
D. B.
(
1988
). “
Perceptual learning of synthetic speech produced by rule
,”
J. Exp. Psychol. Learn. Mem. Cogn.
14
,
421
433
.
15.
Held
,
R.
(
1965
). “
Plasticity in sensory-motor systems
,”
Sci. Am.
213
,
84
94
.
16.
Hervais-Adelman
,
A.
,
Davis
,
M. H.
,
Johnsrude
,
I. S.
, and
Carlyon
,
R. P.
(
2008
). “
Perceptual learning of noise vocoded words: Effects of feedback and lexicality
,”
J. Exp. Psychol. Hum. Percept. Perform.
34
,
460
474
.
17.
Hervais-Adelman
,
A. G.
,
Davis
,
M. H.
,
Johnsrude
,
I. S.
,
Taylor
,
K. J.
, and
Carlyon
,
R. P.
(
2011
). “
Generalization of perceptual learning of vocoded speech
,”
J. Exp. Psychol. Hum. Percept. Perform.
37
,
283
295
.
18.
Hickok
,
G.
, and
Poeppel
,
D.
(
2007
). “
The cortical organization of speech processing
,”
Nat. Rev. Neurosci.
8
,
393
402
.
19.
Knudsen
,
E. I.
(
2002
). “
Instructed learning in the auditory localization pathway of the barn owl
,”
Nature
417
,
322
328
.
20.
Kohler
,
I.
(
1964
).
The Formation and Transformation of the Perceptual World
(
International Universities Press
,
New York
), pp.
1
173
.
21.
Liberman
,
A. M.
, and
Mattingly
,
I. G.
(
1985
). “
The motor theory of speech perception revised
,”
Cognition
21
,
1
36
.
22.
Liberman
,
A. M.
, and
Mattingly
,
I. G.
(
1989
). “
A specialization for speech perception
,”
Science
243
,
489
494
.
23.
Loebach
,
J. L.
,
Bent
,
T.
, and
Pisoni
,
D. B.
(
2008
). “
Multiple routes to the perceptual learning of speech
,”
J. Acoust. Soc. Am.
124
,
552
561
.
24.
Loebach
,
J. L.
, and
Pisoni
,
D. B.
(
2008
). “
Perceptual learning of spectrally degraded speech and environmental sounds
,”
J. Acoust. Soc. Am.
123
,
1126
1139
.
25.
Loebach
,
J. L.
,
Pisoni
,
D. B.
, and
Svirsky
,
M. A.
(
2009
). “
Transfer of auditory perceptual learning with spectrally reduced speech to speech and nonspeech tasks: Implications for cochlear implants
,”
Ear Hear.
30
,
662
674
.
26.
Loebach
,
J. L.
,
Pisoni
,
D. B.
, and
Svirsky
,
M. A.
(
2010
). “
Effects of semantic context and feedback on perceptual learning of speech processed through an acoustic simulation of a cochlear implant
,”
J. Exp. Psychol. Hum. Percept. Perform.
36
,
224
234
.
27.
Mesgarani
,
N.
,
Cheung
,
C.
,
Johnson
,
K.
, and
Chang
,
E. F.
(
2014
). “
Phonetic feature encoding in human superior temporal gyrus
,”
Science
343
,
1006
1010
.
28.
Miller
,
G. A.
, and
Nicely
,
P. E.
(
1955
). “
An analysis of perceptual confusions among some English consonants
,”
J. Acoust. Soc. Am.
27
,
338
352
.
29.
Moore
,
B. C. J.
(
2003
).
An Introduction to the Psychology of Hearing
(
Academic Press
,
London
), pp.
177
212
.
30.
Norris
,
D.
,
McQueen
,
J. M.
, and
Cutler
,
A.
(
2003
). “
Perceptual learning in speech
,”
Cogn. Psychol.
47
,
204
238
.
31.
Phatak
,
S. A.
, and
Allen
,
J. B.
(
2007
). “
Consonant and vowel confusions in speech-weighted noise
,”
J. Acoust. Soc. Am.
121
,
2312
2326
.
32.
Reiss
,
L. A.
,
Turner
,
C. W.
,
Erenberg
,
S. R.
, and
Gantz
,
B. J.
(
2007
). “
Changes in pitch with a cochlear implant over time
,”
J. Assoc. Res. Otolaryngol.
8
,
241
257
.
33.
Reiss
,
L. A.
,
Turner
,
C. W.
,
Karsten
,
S. A.
, and
Gantz
,
B. J.
(
2014
). “
Plasticity in human pitch perception induced by tonotopically mismatched electro-acoustic stimulation
,”
Neuroscience
256
,
43
52
.
34.
Remez
,
R. E.
,
Rubin
,
P. E.
,
Pisoni
,
D. B.
, and
Carrell
,
T. D.
(
1981
). “
Speech perception without traditional speech cues
,”
Science
212
,
947
949
.
35.
Rosen
,
S.
(
1992
). “
Temporal information in speech: Acoustic, auditory and linguistic aspects
,”
Philos. Trans. R. Soc., B
336
,
367
373
.
36.
Rosen
,
S.
,
Faulkner
,
A.
, and
Wilkinson
,
L.
(
1999
). “
Adaptation by normal listeners to upward spectral shifts of speech: Implications for cochlear implants
,”
J. Acoust. Soc. Am.
106
,
3629
3636
.
37.
Wright
,
R.
(
2004
). “
A review of perceptual cues and cue robustness
,” in
Phonetically Based Phonology
, edited by
R. K. B.
Hayes
and
D.
Steriade
(
Cambridge University Press
,
Cambridge
), pp.
34
57
.
You do not currently have access to this content.