The Fourier pseudospectral time-domain method is an efficient wave-based method to model sound propagation in inhomogeneous media. One of the limitations of the method for atmospheric sound propagation purposes is its restriction to a Cartesian grid, confining it to staircase-like geometries. A transform from the physical coordinate system to the curvilinear coordinate system has been applied to solve more arbitrary geometries. For applicability of this method near the boundaries, the acoustic velocity variables are solved for their curvilinear components. The performance of the curvilinear Fourier pseudospectral method is investigated in free field and for outdoor sound propagation over an impedance strip for various types of shapes. Accuracy is shown to be related to the maximum grid stretching ratio and deformation of the boundary shape and computational efficiency is reduced relative to the smallest grid cell in the physical domain. The applicability of the curvilinear Fourier pseudospectral time-domain method is demonstrated by investigating the effect of sound propagation over a hill in a nocturnal boundary layer. With the proposed method, accurate and efficient results for sound propagation over smoothly varying ground surfaces with high impedances can be obtained.

1.
T.
Oshima
,
T.
Ishizuka
, and
T.
Kamijo
, “
Three-dimensional urban acoustic simulations and scale-model measurements over real-life topography
,”
J. Acoust. Soc. Am.
135
,
EL324
EL330
(
2014
).
2.
R.
Cheng
,
P. J.
Morris
, and
K. S.
Brentner
, “
A three dimensional parabolic equation method for sound propagation in moving inhomogeneous media
,”
J. Acoust. Soc. Am.
126
,
1700
1710
(
2009
).
3.
G.
Guillaume
,
J.
Picaut
,
G.
Dutilleux
, and
B.
Gauvreau
, “
Time-domain impedance formulation for transmission line matrix modelling of outdoor sound propagation
,”
J. Sound. Vib.
330
,
6467
6481
(
2011
).
4.
M.
Hornikx
,
R.
Waxler
, and
J.
Forssén
, “
The extended Fourier pseudospectral time-domain method for atmospheric sound propagation
,”
J. Acoust. Soc. Am.
128
,
1632
1646
(
2010
).
5.
M.
Hornikx
,
W.
De Roeck
, and
W.
Desmet
, “
A multi-domain Fourier pseudospectral time-domain method for the linearized Euler equations
,”
J. Comp. Phys.
231
,
4759
4774
(
2012
).
6.
N.
Albin
,
O. P.
Bruno
,
T. Y.
Cheung
, and
R. O.
Cleveland
, “
Fourier continuation methods for high-fidelity simulation of nonlinear acoustic beams
,”
J. Acoust. Soc. Am.
132
,
2371
2387
(
2012
).
7.
J. B.
Schneider
,
C. L.
Wagner
, and
R. J.
Kruhlak
, “
Simple conformal methods for finite-difference time-domain modeling of pressure-release surfaces
,”
J. Acoust. Soc. Am.
104
,
3219
3226
(
1998
).
8.
O.
Marsden
,
C.
Bogey
, and
C.
Bailly
, “
High-order curvilinear simulations of flows around non-Cartesian bodies
,”
J. Comp. Acoust.
13
,
731
748
(
2005
).
9.
D.
Dragna
,
P.
Blanc-Benon
, and
F.
Poisson
, “
Time-domain solver in curvilinear coordinates for outdoor sound propagation over complex terrain
,”
J. Acoust. Soc. Am.
133
,
3751
3763
(
2013
).
10.
Y. Q.
Zeng
,
Q. H.
Liu
, and
G.
Zhao
, “
Multidomain pseudospectral time-domain (PSTD) method for acoustic waves in lossy media
,”
J. Comp. Acoust.
12
,
277
299
(
2004
).
11.
S.
Bilbao
, “
Modeling of complex geometries and boundary conditions in finite difference/finite volume time domain room acoustics simulation
,”
IEEE Trans. Audio, Speech, Lang. Process.
21
,
1524
1533
(
2013
).
12.
J.
Häggblad
and
B.
Engquist
, “
Consistent modeling of boundaries in acoustic finite-difference time-domain simulations
,”
J. Acoust. Soc. Am.
132
,
1303
1310
(
2012
).
13.
P.
Nielsen
,
F.
If
,
P.
Berg
, and
O.
Skovgaard
, “
Using the pseudospectral technique on curved grids for 2D acoustic forward modelling
,”
Geophys. Prospect.
42
,
321
341
(
1994
).
14.
R.
Waxler
,
C. L.
Talmadge
,
S.
Dravida
, and
K. E.
Gilbert
, “
The near-ground structure of the nocturnal sound field
,”
J. Acoust. Soc. Am.
119
,
86
95
(
2006
).
15.
C.
Bogey
and
C.
Bailly
, “
A family of low dispersive and low dissipative explicit schemes for flow and noise computation
,”
J. Comp. Phys.
194
,
194
214
(
2004
).
16.
M.
Hornikx
and
R.
Waxler
, “
The extended Fourier pseudospectral time-domain (PSTD) method for fluid media with discontinuous properties
,”
J. Comp. Acoust.
18
,
297
319
(
2010
).
17.
T. A.
Driscoll
, “
A MATLAB toolbox for Schwarz-Christoffel mapping
,”
ACM Trans. Math. Software
22
,
168
186
(
1996
).
18.
T. A.
Driscoll
, “
Improvements to the Schwarz-Christoffel toolbox for MATLAB
,”
ACM Trans. Math. Software
31
,
239
251
(
2005
).
19.
L.
Mahrt
, “
Surface heterogeneity and vertical structure of the boundary layer
,”
Boundary-Layer Meteorol.
96
,
33
62
(
2000
).
20.
S. N.
Chandler-Wilde
and
D. C.
Hothersall
, “
Efficient calculation of the Green's function for acoustic propagation above a homogeneous impedance plane
,”
J. Sound Vib.
180
,
705
724
(
1995
).
21.
V.
Cutanda Henriquez
and
P. M.
Juhl
, “
OpenBEM—An open source Boundary Element Method software in Acoustics
,” in
Proceedings of Internoise
, Lisbon, Portugal (
2010
).
You do not currently have access to this content.