The ability to segregate simultaneous sound sources based on their spatial locations is an important aspect of auditory scene analysis. While the role of sound azimuth in segregation is well studied, the contribution of sound elevation remains unknown. Although previous studies in humans suggest that elevation cues alone are not sufficient to segregate simultaneous broadband sources, the current study demonstrates they can suffice. Listeners segregating a temporally modulated noise target from a simultaneous unmodulated noise distracter differing in elevation fall into two statistically distinct groups: one that identifies target direction accurately across a wide range of modulation frequencies (MF) and one that cannot identify target direction accurately and, on average, reports the opposite direction of the target for low MF. A non-spiking model of inferior colliculus neurons that process single-source elevation cues suggests that the performance of both listener groups at the population level can be accounted for by the balance of excitatory and inhibitory inputs in the model. These results establish the potential for broadband elevation cues to contribute to the computations underlying sound source segregation and suggest a potential mechanism underlying this contribution.

1.
Aitkin
,
L.
, and
Martin
,
R.
(
1990
). “
Neurons in the inferior colliculus of cats sensitive to sound-source elevation
,”
Hear. Res.
50
,
97
106
.
2.
Asano
,
F.
,
Suzuki
,
Y.
, and
Sone
,
T.
(
1990
). “
Role of spectral cues in median plane localization
,”
J. Acoust. Soc. Am.
88
,
159
168
.
3.
Bacon
,
S. P.
,
Opie
,
J. M.
, and
Montoya
,
D. Y.
(
1998
). “
The effects of hearing loss and noise masking on the masking release for speech in temporally complex backgrounds
,”
J. Speech. Lang. Hear. Res.
41
,
549
563
.
4.
Best
,
V.
,
van Schaik
,
A.
, and
Carlile
,
S.
(
2004
). “
Separation of concurrent broadband sound sources by human listeners
,”
J. Acoust. Soc. Am.
115
,
324
336
.
5.
Bizley
,
J. K.
,
Nodal
,
F. R.
,
Parsons
,
C. H.
, and
King
,
A. J.
(
2007
). “
Role of auditory cortex in sound localization in the midsagittal plane
,”
J. Neurophysiol.
98
,
1763
1774
.
6.
Bregman
,
A. S.
(
1990
).
Auditory Scene Analysis: The Perceptual Organization of Sound
(
MIT Press
,
Cambridge, MA
), Chap. 3, pp.
213
394
.
7.
Bremen
,
P.
,
van Wanrooij
,
M. M.
, and
van Opstal
,
A. J.
(
2010
). “
Pinna cues determine orienting response modes to synchronous sounds in elevation
,”
J. Neurosci.
30
,
194
204
.
8.
Cherry
,
E. C.
(
1953
). “
Some experiments on the recognition of speech, with one and two ears
,”
J. Acoust. Soc. Am.
25
,
975
979
.
9.
Davis
,
K. A.
,
Ramachandran
,
R.
, and
May
,
B. J.
(
2003
). “
Auditory processing of spectral cues for sound localization in the inferior colliculus
,”
J. Assoc. Res. Otolaryngol.
4
,
148
163
.
10.
Festen
,
J. M.
, and
Plomp
,
R.
(
1990
). “
Effects of fluctuating noise and interfering speech on the speech-reception threshold for impaired and normal hearing
,”
J. Acoust. Soc. Am.
88
,
1725
1736
.
11.
Gai
,
Y.
,
Ruhland
,
J. L.
,
Yin
,
T. C. T.
, and
Tollin
,
D. J.
(
2013
). “
Behavioral and modeling studies of sound localization in cats: Effects of stimulus level and duration
,”
J. Neurophysiol.
110
,
607
620
.
12.
Gustafsson
,
H. A.
, and
Arlinger
,
S. D.
(
1994
). “
Masking of speech by amplitude-modulated noise
,”
J. Acoust. Soc. Am.
95
,
518
529
.
13.
Hebrank
,
J.
, and
Wright
,
D.
(
1974
). “
Spectral cues used in the localization of sound sources on the median plane
,”
J. Acoust. Soc. Am.
56
,
1829
1834
.
14.
Hill
,
K. T.
, and
Miller
,
L. M.
(
2010
). “
Auditory attentional control and selection during cocktail party listening
,”
Cereb. Cortex
20
,
583
590
.
15.
Hofman
,
P. M.
, and
van Opstal
,
A. J.
(
1998
). “
Spectro-temporal factors in two-dimensional human sound localization
,”
J. Acoust. Soc. Am.
103
,
2634
2648
.
16.
Hofman
,
P. M.
, and
van Opstal
,
A. J.
(
2003
). “
Binaural weighting of pinna cues in human sound localization
,”
Exp. Brain Res.
148
,
458
470
.
17.
Hofman
,
P. M.
,
van Riswick
,
J. G. A.
, and
van Opstal
,
A. J.
(
1998
). “
Relearning sound localization with new ears
,”
Nat. Neurosci.
1
,
417
421
.
18.
May
,
B. J.
,
Anderson
,
M.
, and
Roos
,
M.
(
2008
). “
The role of broadband inhibition in the rate representation of spectral cues for sound localization in the inferior colliculus
,”
Hear. Res.
238
,
77
83
.
19.
Middlebrooks
,
J. C.
, and
Green
,
D. M.
(
1991
). “
Sound localization by human listeners
,”
Annu. Rev. Psychol.
42
,
135
159
.
20.
Nelken
,
I.
, and
Young
,
E. D.
(
1994
). “
Two separate inhibitory mechanisms shape the responses of dorsal cochlear nucleus type IV units to narrowband and wideband stimuli
,”
J. Neurophysiol.
71
,
2446
2462
.
21.
O'Connor
,
K. N.
,
Johnson
,
J. S.
,
Niwa
,
M.
,
Noriega
,
N. C.
,
Marshall
,
E. A.
, and
Sutter
,
M. L.
(
2011
). “
Amplitude modulation detection as a function of modulation frequency and stimulus duration: Comparisons between macaques and humans
,”
Hear. Res.
277
,
37
43
.
22.
O'Connor
,
K. N.
, and
Sutter
,
M. L.
(
2000
). “
Global spectral and location effects in auditory perceptual grouping
,”
J. Cogn. Neurosci.
12
,
342
354
.
23.
Reiss
,
L. A. J.
, and
Young
,
E. D.
(
2005
). “
Spectral edge sensitivity in neural circuits of the dorsal cochlear nucleus
,”
J. Neurosci.
25
,
3680
3691
.
24.
Roffler
,
S. K.
, and
Butler
,
R. A.
(
1968
). “
Factors that influence the localization of sound in the vertical plane
,”
J. Acoust. Soc. Am.
43
,
1255
1259
.
25.
Shinn-Cunningham
,
B. G.
,
Lee
,
A. K. C.
, and
Oxenham
,
A. J.
(
2007
). “
A sound element gets lost in perceptual competition
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
12223
12227
.
26.
Tollin
,
D. J.
, and
Yin
,
T. C. T.
(
2003
). “
Spectral cues explain illusory elevation effects with stereo sounds in cats
,”
J. Neurophysiol.
90
,
525
530
.
27.
van Wanrooij
,
M. M.
, and
van Opstal
,
A. J. V.
(
2007
). “
Sound localization under perturbed binaural hearing
,”
J. Neurophysiol.
97
,
715
726
.
28.
Vélez
,
A.
, and
Bee
,
M. A.
(
2011
). “
Dip listening and the cocktail party problem in grey treefrogs: Signal recognition in temporally fluctuating noise
,”
Anim. Behav.
82
,
1319
1327
.
29.
Woods
,
D. L.
,
Alain
,
C.
,
Diaz
,
R.
,
Rhodes
,
D.
, and
Ogawa
,
K. H.
(
2001
). “
Location and frequency cues in auditory selective attention
,”
J. Exp. Psychol. Hum. Percept. Perform.
27
,
65
74
.
30.
Yost
,
W. A.
, and
Brown
,
C. A.
(
2013
). “
Localizing the sources of two independent noises: Role of time varying amplitude differences
,”
J. Acoust. Soc. Am.
133
,
2301
2313
.
31.
Young
,
E. D.
,
Spirou
,
G. A.
,
Rice
,
J. J.
,
Voigt
,
H. F.
, and
Rees
,
A.
(
1992
). “
Neural organization and responses to complex stimuli in the dorsal cochlear nucleus
,”
Philos. Trans. R. Soc. London B
336
,
407
413
.
32.
Zwiers
,
M. P.
,
Versnel
,
H.
, and
van Opstal
,
A. J.
(
2004
). “
Involvement of monkey inferior colliculus in spatial hearing
,”
J. Neurosci.
24
,
4145
4156
.
You do not currently have access to this content.