Technical sounds often contain several tonal components, forming a multi-tone sound. The present study investigates the perception of multi-tone sounds consisting of two harmonic complexes with different fundamental frequencies and combination tones with frequencies that are equal to the sum of multiple integers of the two fundamentals. The experimental parameter is the ratio between the two fundamental frequencies ρ. A total of 15 synthetic multi-tone sounds are rated by 37 participants. In the first experiment, the perceptual space is assessed based on 16 adjective scales using categorical scaling. The resulting perceptual space has the four dimensions (i) pleasant, (ii) power, (iii) temporal structure, and (iv) spectral content of the sounds. In the second experiment, the pleasantness is measured with a paired comparison test. The data consistently show that sounds based on ratios of small integers (e.g., ρ=4:3) are significantly less pleasant than sounds with ratios based on large integers which were constructed by a slight detuning from a ratio of small integers. The repetition rate derived from an autocorrelation analysis of the stimuli turns out to be a good predictor of the (un-)pleasantness sensation.

1.
L. H.
Bell
and
D. H.
Bell
,
Industrial Noise Control Fundamentals and Applications
, 2nd ed. (
Marcel Dekker, Inc.
,
New York
,
1993
), pp.
67
73
.
2.
S. C.
Fingerhuth
, “
Tonalness and consonance of technical sounds
,” Ph.D. thesis,
RWTH Aachen, Fakultät für Elektrotechnik und Informationstechnik, Institut für Technische Akustik
,
Logos Verlag, Berlin
,
2010
, pp.
1
138
.
3.
K. D.
Kryter
and
K. S.
Pearsons
, “
Judged noisiness of a band of random noise containing an audible pure tone
,”
J. Acoust. Soc. Am.
38
,
106
112
(
1965
).
4.
R. P.
Hellman
, “
Loudness, annoyance, and noisiness produced by single-tone-noise complexes
,”
J. Acoust. Soc. Am.
72
,
62
73
(
1982
).
5.
E.
Parizet
and
S.
Fingerhuth
, “
Subjective evaluation of tonalness and relation between tonalness and unpleasantness
,” in
Proceedings Internoise 2009
, Ottawa, Canada (
INCE USA
,
Washington
,
2009
), pp.
1
8
.
6.
Y.
Suzuki
,
S.
Kono
, and
T.
Sone
, “
An experimental consideration of the evaluation of environmental noise with tonal components
,”
J. Sound Vib.
127
,
475
484
(
1988
).
7.
R.
Plomp
, “
Timbre as a multidimensional attribute of complex tones
,” in
Frequency Analysis and Periodicity Detection in Hearing
, edited by
R.
Plomp
and
G. F.
Smoorenburg
(
Sijthoff
,
Leiden
,
1970
), pp.
397
414
.
8.
ANSI S1.1-1994, Acoustical terminology (American National Standards Institute, New York, 1994).
9.
C.
Krumhansl
, “
Why is musical timbre so hard to understand?
,” in
Structure and Perception of Electroacoustic Sound and Music
, Vol.
9
, edited by
S.
Nielzen
and
O.
Olsson
(
Elsevier
,
Amsterdam
,
1989
), pp.
43
53
.
10.
S.
McAdams
, “
2–Musical timbre perception
,” in
The Psychology of Music
, 3rd ed., edited by
D.
Deutsch
(
Academic Press
,
New York
,
2013
), pp.
35
67
.
11.
O.
Lartillot
and
P.
Toiviainen
, “
A Matlab toolbox for musical feature extraction from audio
,” in
Proceedings of the 10th International Conference on Digital Audio Effects
,
2007
, pp.
1
8
.
12.
A.
Caclin
,
S.
McAdams
,
B. K.
Smith
, and
S.
Winsberg
, “
Acoustic correlates of timbre space dimensions: A confirmatory study using synthetic tones
,”
J. Acoust. Soc. Am.
118
,
471
482
(
2005
).
13.
T. M.
Elliott
,
L. S.
Hamilton
, and
F. E.
Theunissen
, “
Acoustic structure of the five perceptual dimensions of timbre in orchestral instrument tones
,”
J. Acoust. Soc. Am.
133
,
389
404
(
2013
).
14.
S.
McAdams
,
S.
Winsberg
,
S.
Donnadieu
,
G.
De Soete
, and
J.
Krimphoff
, “
Perceptual scaling of synthesized musical timbres: Common dimensions, specificities, and latent subject classes
,”
Psychol. Res.
58
,
177
192
(
1995
).
15.
P.
Susini
,
G.
Lemaitre
, and
S.
McAdams
, “
Psychological measurement for sound description and evaluation
,” in
Measurement with Persons: Theory, Methods, and Implementation Areas
, edited by
B.
Berglund
,
G. B.
Rossi
,
J. T.
Townsend
, and
L. R.
Pendrill
(
Psychology Press
,
New York
,
2011
), Chap. 11, pp.
227
253
.
16.
C.
Osgood
,
G.
Suci
, and
P.
Tannenbaum
,
The Measurement of Meaning
(
University of Illinois Press
,
Champaign, IL
,
1957
), pp.
1
342
.
17.
J. S.
Kerrick
,
D. C.
Nagel
, and
R. L.
Bennett
, “
Multiple ratings of sound stimuli
,”
J. Acoust. Soc. Am.
45
,
1014
1017
(
1969
).
18.
S.
Namba
,
S.
Kuwano
,
K.
Kinoshita
, and
K.
Kurakata
, “
Loudness and timbre of broad-band noise mixed with frequency-modulated sounds
,”
J. Acoust. Soc. Jpn.
13
,
49
58
(
1992
).
19.
S.
Kuwano
,
S.
Namba
,
K.
Kurakata
, and
Y.
Kikuchi
, “
Evaluation of broad-band noise mixed with amplitude-modulated sounds
,”
J. Acoust. Soc. Jpn.
15
,
131
142
(
1994
).
20.
H.
Hansen
and
R.
Weber
, “
Semantic evaluations of noise with tonal components in Japan, France, and Germany: A cross-cultural comparison
,”
J. Acoust. Soc. Am.
125
,
850
862
(
2009
).
21.
A.
Sköld
,
D.
Västfjäll
, and
M.
Kleiner
, “
Perceived sound character and objective properties of powertrain noise in car compartments
,”
Acta Acust. united Ac.
91
,
349
355
(
2005
).
22.
W. H.
Lichte
, “
Attributes of complex tones
,”
J. Exp. Psychol.
28
,
455
480
(
1941
).
23.
G.
von Bismarck
, “
Timbre of steady sounds: A factorial investigation of its verbal attributes
,”
Acustica
30
,
146
159
(
1974
).
24.
K.
Benedini
, “
Klangfarbenunterschied zwischen tiefpaßgefilterten harmonischen Klängen” (“Timbre differences between lowpass-filtered harmonic complex tones”)
,
Acustica
44
,
129
134
(
1980
).
25.
K.
Benedini
, “
Messung der Klangfarbenunterschiede zwischen schmalbandigen harmonischen Klängen” (“Measurement of timbre differences between complex tones”)
,
Acustica
44
,
188
193
(
1980
).
26.
H.
von Helmholtz
,
Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik (On the Sensations of Tone as a Physiological Basis for the Theory of Music)
, 5th ed. (
Friedrich Vieweg und Sohn
,
Braunschweig
,
1896
), pp.
1
675
.
27.
J.
van de Geer
,
W.
Levelt
, and
R.
Plomp
, “
The connotation of musical consonance
,”
Acta Psychol.
20
,
308
319
(
1962
).
28.
R.
Plomp
and
W. J. M.
Levelt
, “
Tonal consonance and critical bandwidth
,”
J. Acoust. Soc. Am.
38
,
548
560
(
1965
).
29.
E.
Terhardt
, “
Pitch, consonance, and harmony
,”
J. Acoust. Soc. Am.
55
,
1061
1069
(
1974
).
30.
A.
Kameoka
and
M.
Kuriyagawa
, “
Consonance theory part i: Consonance of dyads
,”
J. Acoust. Soc. Am.
45
,
1451
1459
(
1969
).
31.
R.
Plomp
, “
Beats of mistuned consonances
,”
J. Acoust. Soc. Am.
42
,
462
474
(
1967
).
32.
E.
Zwicker
and
H.
Fastl
,
Psychoacoustics: Facts and Models
, 3rd ed. (
Springer
,
Berlin/Heidelberg
,
2007
), pp.
247
261
.
33.
A.
Kameoka
and
M.
Kuriyagawa
, “
Consonance theory Part II: Consonance of complex tones and its calculation method
,”
J. Acoust. Soc. Am.
45
,
1460
1469
(
1969
).
34.
A.
Miskiewicz
,
T.
Rogala
, and
J.
Szepanska-Antosik
, “
Perceived roughness of two simultaneous harmonic complex tones
,”
Archives Acoust.
32
,
737
748
(
2007
).
35.
H.
Fletcher
,
E. D.
Blackham
, and
R.
Stratton
, “
Quality of piano tones
,”
J. Acoust. Soc. Am.
34
,
749
761
(
1962
).
36.
H.
Fletcher
,
E. D.
Blackham
, and
D. A.
Christensen
, “
Quality of organ tones
,”
J. Acoust. Soc. Am.
35
,
314
325
(
1963
).
37.
E. A.
Björk
, “
The perceived quality of natural sounds
,”
Acta Acust. united Ac.
57
,
185
190
(
1985
).
38.
R. T.
Beyer
,
Nonlinear Acoustics
(
Acoustical Society of America Publishing
,
Sewickley, PA
,
1997
), pp.
1
452
, originally published 1974.
39.
R. T.
Schumacher
, “
Ab initio calculations of the oscillations of a clarinet
,”
Acustica
48
,
71
85
(
1981
).
40.
D. H.
Keefe
and
B.
Laden
, “
Correlation dimension of woodwind multiphonic tones
,”
J. Acoust. Soc. Am.
90
,
1754
1765
(
1991
).
41.
E.
Parizet
,
N.
Hamzaoui
, and
G.
Sabatie
, “
Comparison of some listening test methods: A case study
,”
Acta Acust. united Ac.
91
,
356
364
(
2005
).
42.
R.
Plomp
and
H. J. M.
Steeneken
, “
Effect of phase on the timbre of complex tones
,”
J. Acoust. Soc. Am.
46
,
409
421
(
1969
).
43.
S.
Töpken
,
J. L.
Verhey
, and
R.
Weber
, “
Psychoakustische Bewertung von superponierten Tonkomplexen” (“Psychoacoustic evaluation of superimposed complex tones”)
, in
Fortschritte der Akustik—DAGA2010, Berlin, Germany
(
DEGA e.V.
,
Berlin
,
2010
), pp.
589
590
.
44.
E.
Parizet
, “
Comparison of two semantic differential test methods
,”
J. Acoust. Soc. Am.
105
,
1189
1189
(
1999
).
45.
H. F.
Kaiser
and
J.
Rice
, “
Little jiffy, mark iv
,”
Educ. Psychol. Meas.
34
,
111
117
(
1974
).
46.
M. G.
Kendall
and
B. B.
Smith
, “
On the method of paired comparisons
,”
Biometrika
31
,
324
345
(
1940
).
47.
R. T.
Ross
, “
Optimum orders for the presentation of pairs in the method of paired comparison
,”
J. Ed. Psychol.
25
,
375
382
(
1934
).
48.
M.
Kendall
and
J. D.
Gibbons
,
Rank Correlation Methods
, 5th ed. (
Oxford University Press
,
New York
,
1990
), pp.
184
194
.
49.
J.
You
and
J. Y.
Jeon
, “
Just noticeable differences of sound quality metrics of refrigerator noise
,” in
Proceedings of the 19th ICA
, Madrid, Sociedad Española de Acústica (
2007
), pp.
1
5
.
50.
F.
Pedrielli
,
E.
Carletti
, and
C.
Casazza
, “
Just noticeable differences of loudness and sharpness for earth moving machines
,”
J. Acoust. Soc. Am.
123
,
3164
3164
(
2008
) and Proc. Acoustics'08, ASA/EAA/SFA joint meeting, Paris (Société Française d'Acoustique, SFA, 2008).
51.

Calculations are carried out by commercial software, HEAD acoustics ArtemiS 11.

52.

The repetition rate describes the overall repetition rate of the time signal which can also be found as the lowest component in the modulation spectrum of the signal. Other audible modulations at higher modulation frequencies can also occur for this type of signals.

53.

Note that the adjective pleasant–unpleasant is loading positively to the pleasant factor, meaning that low factor values are associated to pleasantness and high factor values to unpleasantness.

54.
J. M.
Geary
, “
Consonance and dissonance of pairs of inharmonic sounds
,”
J. Acoust. Soc. Am.
67
,
1785
1789
(
1980
).
55.
W. A.
Sethares
, “
Local consonance and the relationship between timbre and scale
,”
J. Acoust. Soc. Am.
94
,
1218
1228
(
1993
).
56.
J. B.
Tufts
,
M. R.
Molis
, and
M. R.
Leek
, “
Perception of dissonance by people with normal hearing and sensorineural hearing loss
,”
J. Acoust. Soc. Am.
118
,
955
967
(
2005
).
57.
R. M.
Warren
and
J. A.
Bashford
, “
Perception of acoustic iterance: Pitch and infrapitch
,”
Percept. Psychophys.
29
,
395
402
(
1981
).
58.
K.
Hiramatsu
,
K.
Takagi
, and
T.
Yamamoto
, “
Experimental investigation on the effect of some temporal factors of nonsteady noise on annoyance
,”
J. Acoust. Soc. Am.
74
,
1782
1793
(
1983
).
You do not currently have access to this content.