Head-related transfer functions (HRTFs) can be numerically calculated by applying the boundary element method on the geometry of a listener's head and pinnae. The calculation results are defined by geometrical, numerical, and acoustical parameters like the microphone used in acoustic measurements. The scope of this study was to estimate requirements on the size and position of the microphone model and on the discretization of the boundary geometry as triangular polygon mesh for accurate sound localization. The evaluation involved the analysis of localization errors predicted by a sagittal-plane localization model, the comparison of equivalent head radii estimated by a time-of-arrival model, and the analysis of actual localization errors obtained in a sound-localization experiment. While the average edge length (AEL) of the mesh had a negligible effect on localization performance in the lateral dimension, the localization performance in sagittal planes, however, degraded for larger AELs with the geometrical error as dominant factor. A microphone position at an arbitrary position at the entrance of the ear canal, a microphone size of 1 mm radius, and a mesh with 1 mm AEL yielded a localization performance similar to or better than observed with acoustically measured HRTFs.

1.
Algazi
,
V. R.
,
Avendano
,
C.
, and
Duda
,
R. O.
(
2001a
). “
Estimation of a spherical-head model from anthropometry
,”
J. Audio Eng. Soc.
49
,
472
479
.
2.
Algazi
,
V. R.
,
Avendano
,
C.
, and
Duda
,
R. O.
(
2001b
). “
Elevation localization and head-related transfer function analysis at low frequencies
,”
J. Acoust. Soc. Am.
109
,
1110
1122
.
3.
Algazi
,
V. R.
,
Duda
,
R. O.
,
Thompson
,
D. M.
, and
Avendano
,
C.
(
2001c
). “
The CIPIC HRTF database
,” in
Proceedings of 2001 IEEE Workshop on Applications of Signal Processing to Audio and Electroacoustics
, New York, pp.
99
102
.
4.
Andéol
,
G.
,
Macpherson
,
E. A.
, and
Sabin
,
A. T.
(
2013
). “
Sound localization in noise and sensitivity to spectral shape
,”
Hear. Res.
304
,
20
27
.
5.
Andreopoulou
,
A.
,
Begault
,
D.
, and
Katz
,
B.
(
2015
). “
Inter-laboratory round robin HRTF measurement comparison
,”
IEEE J. Sel. Top. Signal Process.
PP
(99),
1
12
.
6.
Baumgartner
,
R.
,
Majdak
,
P.
, and
Laback
,
B.
(
2013
). “
Assessment of sagittal-plane sound localization performance in spatial-audio applications
,” in
The Technology of Binaural Listening
, edited by
J.
Blauert
(
Springer
,
Berlin
), Chap. 4.
7.
Botsch
,
M.
, and
Kobbelt
,
L.
(
2004
). “
A remeshing approach to multiresolution modeling
,” in
Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing
(SGP'04) (
ACM
,
New York
), pp.
185
192
.
8.
Bronkhorst
,
A. W.
(
1995
). “
Localization of real and virtual sound sources
,”
J. Acoust. Soc. Am.
98
,
2542
2553
.
9.
Chen
,
Z.-S.
,
Waubke
,
H.
, and
Kreuzer
,
W.
(
2008
). “
A formulation of the fast multipole boundary element method (FMBEM) for acoustic radiation and scattering from three-dimensional structures
,”
J. Comput. Acoust.
16
,
303
320
.
10.
Cheng
,
Y.
,
Leow
,
W.-K.
, and
Lim
,
T. C.
(
2012
). “
Automatic identification of Frankfurt plane and mid-sagittal plane of skull
,” in
Proceedings of 2012 IEEE Workshop on the Applications of Computer Vision
, Breckenridge, CO, pp.
233
238
.
11.
Cignoni
,
P.
,
Rocchini
,
C.
, and
Scopigno
,
R.
(
1998
). “
Metro: Measuring error on simplified surfaces
,”
Comput. Graph. Forum
17
,
167
174
.
12.
Greff
,
R.
, and
Katz
,
B. F. G.
(
2007
). “
Round robin comparison of HRTF simulation systems: Preliminary results
,” in
Proceedings of the 123th Convention of the Audio Engineering Society
, New York, Convention Paper 7188.
13.
Gumerov
,
N. A.
,
O'Donovan
,
A. E.
,
Duraiswami
,
R.
, and
Zotkin
,
D. N.
(
2010
). “
Computation of the head-related transfer function via the fast multipole accelerated boundary element method and its spherical harmonic representation
,”
J. Acoust. Soc. Am.
127
,
370
386
.
14.
Hebrank
,
J.
, and
Wright
,
D.
(
2005
). “
Spectral cues used in the localization of sound sources on the median plane
,”
J. Acoust. Soc. Am.
56
,
1829
1834
.
15.
Huttunen
,
T.
,
Seppälä
,
E. T.
,
Kirkeby
,
O.
,
Kärkkäinen
,
A.
, and
Kärkkäinen
,
L.
(
2007
). “
Simulation of the transfer function for a head-and-torso model over the entire audible frequency range
,”
J. Comput. Acoust.
15
,
429
448
.
16.
Jin
,
C. T.
,
Guillon
,
P.
,
Epain
,
N.
,
Zolfaghari
,
R.
,
van Schaik
,
A.
,
Tew
,
A. I.
,
Hetherington
,
C.
, and
Thorpe
,
J.
(
2014
). “
Creating the Sydney York morphological and acoustic recordings of ears database
,”
IEEE Trans. Multimedia
16
,
37
46
.
17.
Kahana
,
Y.
, and
Nelson
,
P. A.
(
2006
). “
Numerical modelling of the spatial acoustic response of the human pinna
,”
J. Sound Vib.
292
,
148
178
.
18.
Katz
,
B. F. G.
(
2001a
). “
Boundary element method calculation of individual head-related transfer function. I. Rigid model calculation
,”
J. Acoust. Soc. Am.
110
,
2440
2448
.
19.
Katz
,
B. F. G.
(
2001b
). “
Boundary element method calculation of individual head-related transfer function. II. Impedance effects and comparisons to real measurements
,”
J. Acoust. Soc. Am.
110
,
2449
2455
.
20.
Katz
,
B. F. G.
, and
Noisternig
,
M.
(
2014
). “
A comparative study of interaural time delay estimation methods
,”
J. Acoust. Soc. Am.
135
,
3530
3540
.
21.
Kreuzer
,
W.
,
Majdak
,
P.
, and
Chen
,
Z.
(
2009
). “
Fast multipole boundary element method to calculate head-related transfer functions for a wide frequency range
,”
J. Acoust. Soc. Am.
126
,
1280
1290
.
22.
Kuhn
,
G. F.
(
1977
). “
Model for the interaural time differences in the azimuthal plane
,”
J. Acoust. Soc. Am.
62
,
157
167
.
23.
Langendijk
,
E. H. A.
, and
Bronkhorst
,
A. W.
(
2002
). “
Contribution of spectral cues to human sound localization
,”
J. Acoust. Soc. Am.
112
,
1583
1596
.
24.
Lopez-Poveda
,
E. A.
, and
Meddis
,
R.
(
1996
). “
A physical model of sound diffraction and reflections in the human concha
,”
J. Acoust. Soc. Am.
100
,
3248
3259
.
25.
Lorensen
,
W. E.
, and
Cline
,
H. E.
(
1987
). “
Marching cubes: A high resolution 3D surface construction algorithm
,” in
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH'87), edited by
Maureen C.
Stone
(
ACM
,
New York
), pp.
163
169
.
26.
Macpherson
,
E. A.
, and
Middlebrooks
,
J. C.
(
2002
). “
Listener weighting of cues for lateral angle: The duplex theory of sound localization revisited
,”
J. Acoust. Soc. Am.
111
,
2219
2236
.
27.
Majdak
,
P.
,
Baumgartner
,
R.
, and
Laback
,
B.
(
2014
). “
Acoustic and non-acoustic factors in modeling listener-specific performance of sagittal-plane sound localization
,”
Front. Psychol.
5
(319),
1
10
.
28.
Majdak
,
P.
,
Goupell
,
M. J.
, and
Laback
,
B.
(
2010
). “
3-D localization of virtual sound sources: Effects of visual environment, pointing method, and training
,”
Atten. Percept. Psychophys.
72
,
454
469
.
29.
Majdak
,
P.
,
Masiero
,
B.
, and
Fels
,
J.
(
2013
). “
Sound localization in individualized and non-individualized crosstalk cancellation systems
,”
J. Acoust. Soc. Am.
133
,
2055
2068
.
30.
Marburg
,
S.
(
2002
). “
Six boundary elements per wavelength: Is that enough?
,”
J. Comput. Acoust.
10
,
25
51
.
31.
Mey
,
F. D.
,
Reijniers
,
J.
,
Peremans
,
H.
,
Otani
,
M.
, and
Firzlaff
,
U.
(
2008
). “
Simulated head related transfer function of the phyllostomid bat Phyllostomus discolor
,”
J. Acoust. Soc. Am.
124
,
2123
2132
.
32.
Middlebrooks
,
J. C.
(
1999a
). “
Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency
,”
J. Acoust. Soc. Am.
106
,
1493
1510
.
33.
Middlebrooks
,
J. C.
(
1999b
). “
Individual differences in external-ear transfer functions reduced by scaling in frequency
,”
J. Acoust. Soc. Am.
106
,
1480
1492
.
34.
Møller
,
H.
,
Sørensen
,
M. F.
,
Hammershøi
,
D.
, and
Jensen
,
C. B.
(
1995
). “
Head-related transfer functions of human subjects
,”
J. Audio Eng. Soc.
43
,
300
321
.
35.
Morse
,
P. M.
, and
Ingard
,
K. U.
(
1986
).
Theoretical Acoustics
(
Princeton University Press
,
Princeton, NJ
), pp.
1
949
.
36.
Rébillat
,
M.
,
Benichoux
,
V.
,
Otani
,
M.
,
Keriven
,
R.
, and
Brette
,
R.
(
2014
). “
Estimation of the low-frequency components of the head-related transfer functions of animals from photographs
,”
J. Acoust. Soc. Am.
135
,
2534
2544
.
37.
Reichinger
,
A.
,
Majdak
,
P.
,
Sablatnig
,
R.
, and
Maierhofer
,
S.
(
2013
). “
Evaluation of Methods for Optical 3-D Scanning of Human Pinnas
,” in
Proceedings of the International Conference on 3D Vision
(3DV 2013), pp.
390
397
.
38.
Sauter
,
S. A.
, and
Schwab
,
C.
(
2010
).
Boundary Element Methods
(
Springer
,
Heidelberg
), pp.
1
500
.
39.
Takemoto
,
H.
,
Mokhtari
,
P.
,
Kato
,
H.
,
Nishimura
,
R.
, and
Iida
,
K.
(
2012
). “
Mechanism for generating peaks and notches of head-related transfer functions in the median plane
,”
J. Acoust. Soc. Am.
132
,
3832
3841
.
40.
Treeby
,
B. E.
, and
Pan
,
J.
(
2009
). “
A practical examination of the errors arising in the direct collocation boundary element method for acoustic scattering
,”
Eng. Anal. Boundary Elem.
33
,
1302
1315
.
41.
Treeby
,
B. E.
,
Pan
,
J.
, and
Paurobally
,
R. M.
(
2007a
). “
An experimental study of the acoustic impedance characteristics of human hair
,”
J. Acoust. Soc. Am.
122
,
2107
2117
.
42.
Treeby
,
B. E.
,
Pan
,
J.
, and
Paurobally
,
R. M.
(
2007b
). “
The effect of hair on auditory localization cues
,”
J. Acoust. Soc. Am.
122
,
3586
3597
.
43.
Wightman
,
F. L.
, and
Kistler
,
D. J.
(
1989
). “
Headphone simulation of free-field listening. I: Stimulus synthesis
,”
J. Acoust. Soc. Am.
85
,
858
867
.
44.
Ziegelwanger
,
H.
, and
Majdak
,
P.
(
2014
). “
Modeling the direction-continuous time-of-arrival in head-related transfer functions
,”
J. Acoust. Soc. Am.
135
,
1278
1293
.
45.
Ziegelwanger
,
H.
,
Reichinger
,
A.
, and
Majdak
,
P.
(
2013
). “
Calculation of listener-specific head-related transfer functions: Effect of mesh quality
,”
POMA
19
,
050017
.
You do not currently have access to this content.