Underwater noise from vibratory pile driving was observed using a vertical line array placed at range 16 m from the pile source (water depth 7.5 m), and using single hydrophones at range 417 m on one transect, and range 207 and 436 m on another transect running approximately parallel to a sloping shoreline. The dominant spectral features of the underwater noise are related to the frequency of the vibratory pile driving hammer (typically 15–35 Hz), producing spectral lines at intervals of this frequency. The mean-square pressure versus depth is subsequently studied in third-octave bands. Depth and frequency variations of this quantity observed at the vertical line array are well modeled by a field consisting of an incoherent sum of sources distributed over the water column. Adiabatic mode theory is used to propagate this field to greater ranges and model the observations made along the two depth-varying transects. The effect of shear in the seabed, although small, is also included. Bathymetric refraction on the transect parallel to the shoreline reduced mean-square pressure levels at the 436-m measurement site.

1.
P. G.
Reinhall
and
P. H.
Dahl
, “
Underwater Mach wave radiation from impact pile driving: Theory and observation
,”
J. Acoust. Soc. Am.
130
(
3
),
1209
1216
(
2011
).
2.
M.
Zampolli
,
M. J. J.
Nijhof
,
C. A. F.
de Jong
,
M. A.
Ainslie
,
E. H. W.
Jansen
, and
B. A. J.
Quesson
, “
Validation of finite element computations for the quantitative prediction of underwater noise from impact pile driving
,”
J. Acoust. Soc. Am.
133
(
1
),
72
81
(
2013
).
3.
P. H.
Dahl
and
P. G.
Reinhall
, “
Beam forming of the underwater sound field from impact pile driving
,”
J. Acoust. Soc. Am.
134
(
1
),
EL1
EL6
(
2013
).
4.
T.
Lippert
and
O.
von Estorff
, “
On a hybrid model for the prediction of pile driving noise from offshore wind farms
,”
Acta Acust. Acust.
100
(
2
),
244
253
(
2014
).
5.
A.
Tsouvalas
and
A. V.
Metrikine
, “
A three-dimensional vibroacoustic model for the prediction of underwater noise from offshore pile driving
,”
J. Sound Vib.
333
,
2283
2311
(
2014
).
6.

Course sand is a characteristic description given in the log of test borings made by the Washington State Department of Transportation in the immediate vicinity of the Port Townsend ferry terminal construction site.

7.
E. L.
Hamilton
, “
Geoacoustic modeling of the sea floor
,”
J. Acoust. Soc. Am.
68
,
1313
1340
(
1980
).
8.
D. B.
Percival
and
A. T.
Walden
,
Spectral Analysis for Physical Applications
(
Cambridge University Press
,
Cambridge, UK
,
1993
), p.
46
.
9.
W. A.
Kuperman
and
P.
Roux
, “
Underwater acoustics
,” in
Springer Handbook of Acoustics
, edited by
T. D.
Rossing
(
Springer
,
New York
,
2007
), p.
183
.
10.
Z. Y.
Zhang
and
C. T.
Tindle
, “
Complex effective depth of the ocean bottom
,”
J. Acoust. Soc. Am.
93
,
205
213
(
1993
).
11.
D. D.
Ellis
and
D. M. F.
Chapman
, “
A simple shallow water propagation model including shear wave effects
,”
J. Acoust. Soc. Am.
78
,
2087
2095
(
1985
).
12.
M. B.
Porter
, “
Adiabatic modes for a point source in a plane geometry
,”
J. Acoust. Soc. Am.
96
,
1918
1921
(
1994
).
13.
C. H.
Harrison
, “
Acoustic shadow zones in the horizontal plane
,”
J. Acoust. Soc. Am.
65
(
1
),
56
71
(
1979
).
14.
M. J.
Buckingham
, “
Theory of three-dimensional acoustic propagation in a wedge-like ocean with penetrable bottom
,”
J. Acoust. Soc. Am.
82
,
198
210
(
1987
).
15.
G. B.
Deane
and
M. J.
Buckingham
, “
Analysis of the three-dimensional sound field in a penetrable wedge with stratified fluid or elastic basement
,”
J. Acoust. Soc. Am.
93
,
1319
1328
(
1993
).
16.
F.
Sturm
, “
Numerical study of broadband sound pulse propagation in three-dimensional oceanic waveguides
,”
J. Acoust. Soc. Am.
117
,
1058
1079
(
2005
).
17.
M. S.
Ballard
, “
Modeling three-dimensional propagation in a continental shelf environment
,”
J. Acoust. Soc. Am.
131
,
1969
1977
(
2012
).
18.
D. E.
Weston
, “
Intensity range relations in oceanographic acoustics
,”
J. Sound Vib.
18
(
2
),
271
287
(
1971
).
19.
C. H.
Harrison
, “
Closed-form expressions for ocean reverberation and signal excess with mode stripping and Lambert's Law
,”
J. Acoust. Soc. Am.
114
(
5
),
2744
2756
(
2003
).
20.
T.
Lippert
and
O.
von Estorff
, “
The significance of parameter uncertainties for the prediction of offshore pile driving noise
,”
J. Acoust. Soc. Am.
136
,
2463
2471
(
2014
).
21.
J.-X.
Zhou
,
X.-Z.
Zhang
, and
D. P.
Knobles
, “
Low frequency attenuation model for the effective properties of sandy bottoms
,”
J. Acoust. Soc. Am.
125
,
2847
2866
(
2009
).
22.
J. J.
Beebe
,
S. T.
McDaniel
, and
L. A.
Rubano
, “
Shallow-water transmission loss prediction using the Biot sediment model
,”
J. Acoust. Soc. Am.
71
,
1417
1426
(
1982
).
You do not currently have access to this content.