Porous materials are widely used for improving sound absorption and sound transmission loss of vibrating structures. However, their efficiency is limited to medium and high frequencies of sound. A solution for improving their low frequency behavior while keeping an acceptable thickness is to embed resonant structures such as Helmholtz resonators (HRs). This work investigates the absorption and transmission acoustic performances of a cellular porous material with a two-dimensional periodic arrangement of HR inclusions. A low frequency model of a resonant periodic unit cell based on the parallel transfer matrix method is presented. The model is validated by comparison with impedance tube measurements and simulations based on both the finite element method and a homogenization based model. At the HR resonance frequency (i) the transmission loss is greatly improved and (ii) the sound absorption of the foam can be either decreased or improved depending on the HR tuning frequency and on the thickness and properties of the host foam. Finally, the diffuse field sound absorption and diffuse field sound transmission loss performance of a 2.6 m2 resonant cellular material are measured. It is shown that the improvements observed at the Helmholtz resonant frequency on a single cell are confirmed at a larger scale.

1.
I. U.
Borchers
,
S. T.
Laemmlein
,
P.
Bartels
,
A.
Rausch
,
M.
Faust
,
J. A. F.
Coebergh
, and
K.
Koeble
, “
Acoustic protection on payload fairings of expendable launch vehicles
,” U.S. patent 5,670,758 (
1997
).
2.
W. O.
Hughes
and
A. M.
McNelis
, “
Cassini/Titan IV acoustic blanket development and testing
,”
NASA Technical Memorandum 107266, prepared for the 42nd Annual Technical Meeting and Exposition sponsored by the Institute of Environmental Sciences
,
Orlando, FL
(May 12–16,
1996
).
3.
S.
Sugie
,
J.
Yoshimura
, and
T.
Iwase
, “
Effect of inserting a Helmholtz resonator on sound insulation in a double-leaf partition cavity
,”
Acoust. Sci. Tech.
30
(
5
),
317
326
(
2009
).
4.
J. M.
Mason
and
F. J.
Fahy
, “
The use of acoustically tuned resonators to improve the sound transmission loss of double-panel partitions
,”
J. Sound Vib.
124
(
2
),
367
379
(
1988
).
5.
R. A.
Prydz
,
L. S.
Wirt
,
H. L.
Kuntz
, and
L. D.
Pope
, “
Transmission loss of a multilayer panel with internal tuned Helmholtz resonators
,”
J. Acoust. Soc. Am.
87
(
4
),
1597
1602
(
1990
).
6.
H. L.
Kuntz
,
R. A.
Prydz
, and
F. J.
Balena
, “
Development and testing of cabin sidewall acoustic resonators for the reduction of cabin tone levels in prop fan-powered aircraft
,”
Noise Cont. Eng. J.
37
(
3
),
120
142
(
1991
).
7.
C. L.
Ding
,
L.
Hao
, and
X. P.
Zhao
, “
Two-dimensional acoustic metamaterial with negative modulus
,”
J. Appl. Phys.
108
,
074911
(
2010
).
8.
C. L.
Ding
and
X. P.
Zhao
, “
Multi-band and broadband acoustic metamaterial with resonant structures
,”
J. Phys. D: Appl. Phys.
44
,
215402
(
2011
).
9.
M.
Reynolds
and
S.
Daley
, “
An active viscoelastic metamaterial for isolation applications
,”
Smart Mater. Struct.
23
,
045030
(
2014
).
10.
C.
Boutin
, “
Acoustics of porous media with inner resonators
,”
J. Acoust. Soc. Am.
134
(
6
),
4717
4729
(
2013
).
11.
C.
Boutin
and
F.-X.
Bécot
, “
Theory and experiments on poro-acoustics with inner resonators
,”
Wave Motion
54
,
76
99
(
2015
).
12.
C.
Lagarrigue
,
J. P.
Groby
,
V.
Tournat
, and
O.
Dazel
, “
Absorption of sound by porous layers with embedded periodic arrays of resonant inclusions
,”
J. Acoust. Soc. Am.
134
(
6
),
4670
4680
(
2013
).
13.
J.-P.
Groby
,
C.
Lagarrigue
,
B.
Brouard
,
O.
Dazel
,
V.
Tournat
, and
B.
Nennig
, “
Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators
,”
J. Acoust. Soc. Am.
137
(
1
),
273
280
(
2015
).
14.
N.
Fang
,
D.
Xi
,
J.
Xu
,
M.
Ambati
,
W.
Srituravanich
,
C.
Sun
, and
X.
Zhang
, “
Ultrasonic meta-material with negative modulus
,”
Nat. Mater.
5
,
452
456
(
2006
).
15.
W.
Lauriks
,
P.
Mees
, and
J. F.
Allard
, “
The acoustic transmission through layered systems
,”
J. Sound Vib.
155
(
1
),
125
132
(
1992
).
16.
J. F.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials
, 2nd ed. (
Wiley
,
Chichester, UK
,
2009
), Chap. 4, pp.
45
72
; Chap. 5, pp. 73–107; Chap. 9.3.5, pp. 203–205; and Chap. 11, pp. 243–281.
17.
A.
Pellicier
and
N.
Trompette
, “
A review of analytical methods, based on the wave approach, to compute partitions transmission loss
,”
Appl. Acoust.
68
,
1192
1212
(
2007
).
18.
K.
Verdière
,
R.
Panneton
,
S.
Elkoun
,
T.
Dupont
, and
P.
Leclaire
, “
Transfer matrix method applied to the parallel assembly of sound absorbing materials
,”
J. Acoust. Soc. Am.
134
(
6
),
4648
4658
(
2013
).
19.
K.
Verdière
,
R.
Panneton
,
S.
Elkoun
,
T.
Dupont
, and
P.
Leclaire
, “
Comparison between parallel transfer matrix method and admittance sum method
,”
J. Acoust. Soc. Am.
136
(
2
),
EL90
EL95
(
2014
).
20.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid Mech.
176
,
379
402
(
1987
).
21.
Y.
Champoux
and
J. F.
Allard
, “
Dynamic tortuosity and bulk modulus in air-saturated porous media
,”
J. Appl. Phys.
70
(
4
),
1975
1979
(
1991
).
22.
B. M.
Efimtsov
and
L. A.
Lazarev
, “
Sound transmission loss of panels with resonant elements
,”
Acoust. Phys.
47
(
3
),
346
351
(
2001
).
23.
R.
Panneton
, “
Normal incidence sound transmission loss evaluation by upstream surface impedance measurements
,”
J. Acoust. Soc. Am.
125
(
3
),
1490
1497
(
2009
).
24.
Y.
Salissou
,
R.
Panneton
, and
O.
Doutres
, “
Complement to standard method for measuring normal incidence sound transmission loss with three microphones
,”
J. Acoust. Soc. Am.
131
,
EL216
EL222
(
2012
).
25.
ASTM E2611-09. Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method (American Society for Testing and Materials).
26.
ASTM E1050-10. Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System (American Society for Testing and Materials).
27.
ISO 15186-1. Acoustics—Measurement of Sound Insulation in Buildings and of Building Elements Using Sound Intensity—Part 1: Laboratory Measurements (
2000
).
28.
ASTM C423-02. Standard Test Method for Sound Absorption and Sound Absorption Coefficient by the Reverberation Room Method (American Society for Testing and Materials).
29.
A.
Selamet
and
I.
Lee
, “
Helmholtz resonator with extended neck
,”
J. Acoust. Soc. Am.
113
(
4
),
1975
1985
(
2003
).
30.
O.
Doutres
,
N.
Atalla
, and
K.
Dong
, “
A semi-phenomenological model to predict the acoustic behavior of fully and partially reticulated polyurethane foams
,”
J. Appl. Phys.
113
,
054901
(
2013
).
31.
O.
Doutres
,
Y.
Salissou
,
N.
Atalla
, and
R.
Panneton
, “
Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube
,”
Appl. Acoust.
71
,
506
509
(
2010
).
32.
O.
Doutres
and
N.
Atalla
, “
Acoustic contributions of a sound absorbing blanket placed in a double panel structure: Absorption versus transmission
,”
J. Acoust. Soc. Am.
128
(
2
),
664
671
(
2010
).
33.
A.
Nash
, “
On the reproducibility of measuring random incidence sound absorption
,” in
Proceedings of Internoise 2012
,
New York, NY
(August 19–22,
2012
), pp.
1
12
.
34.
C. H.
Jeong
, “
Converting Sabine absorption coefficients to random incidence absorption coefficients
,”
J. Acoust. Soc. Am.
133
(
6
),
3951
3962
(
2013
).
35.
O.
Robin
,
A.
Berry
,
O.
Doutres
, and
N.
Atalla
, “
Measurement of the absorption coefficient of sound absorbing materials under a synthesized diffuse acoustic field
,”
J. Acoust. Soc. Am.
136
(
1
),
EL13
EL19
(
2014
).
You do not currently have access to this content.