This paper offers a re-evaluation of the mechanical properties of the tracheo-bronchial soft tissues and cartilage and uses a model to examine their effects on the subglottal acoustic input impedance. It is shown that the values for soft tissue elastance and cartilage viscosity typically used in models of subglottal acoustics during phonation are not accurate, and corrected values are proposed. The calculated subglottal acoustic input impedance using these corrected values reveals clusters of weak resonances due to soft tissues (SgT) and cartilage (SgC) lining the walls of the trachea and large bronchi, which can be observed empirically in subglottal acoustic spectra. The model predicts that individuals may exhibit SgT and SgC resonances to variable degrees, depending on a number of factors including tissue mechanical properties and the dimensions of the trachea and large bronchi. Potential implications for voice production and large pulmonary airway tissue diseases are also discussed.

1.
T. G.
Csapó
,
Z.
Bárkányi
,
T. E.
Gráczi
,
T.
Bőhm
, and
S. M.
Lulich
, “
Relation of formants and subglottal resonances in Hungarian vowels
,” in
Proceedings of Interspeech
(
2009
), pp.
484
487
.
2.
G.
Fant
,
K.
Ishizaka
,
J.
Lindqvist
, and
J.
Sundberg
, “
Subglottal formants
,”
STL-QPSR
1
,
1
12
(
1972
).
3.
T. E.
Gráczi
,
S. M.
Lulich
,
T. G.
Csapó
, and
A.
Beke
, “
Context and speaker dependency in the relation of vowel formants and subglottal resonances—evidence from Hungarian
,” in
Proceedings of Interspeech
(
2011
), pp.
1901
1904
.
4.
S. M.
Lulich
,
A.
Alwan
,
H.
Arsikere
,
J. R.
Morton
, and
M. S.
Sommers
, “
Resonances and wave propagation velocity in the subglottal airways
,”
J. Acoust. Soc. Am.
130
,
2108
2115
(
2011
).
5.
S. M.
Lulich
,
H.
Arsikere
,
J. R.
Morton
,
G. K. F.
Leung
,
A.
Alwan
, and
M. S.
Sommers
, “
Analysis and automatic estimation of children's subglottal resonance
,” in
Proceedings of Interspeech
(
2011
), pp.
2817
2820
.
6.
S. M.
Lulich
,
J. R.
Morton
,
H.
Arsikere
,
M. S.
Sommers
,
G. K. F.
Leung
, and
A.
Alwan
, “
Subglottal resonances of adult male and female native speakers of American English
,”
J. Acoust. Soc. Am.
132
,
2592
2602
(
2012
).
7.
W.
Wokurek
and
A.
Madsack
, “
Accelerometer sensor based estimates of subglottal resonances: Short vs. long vowels
,” in
Proceedings of Interspeech
(
2011
), pp.
2821
2824
.
8.
J. J.
Fredberg
, “
A modal perspective on lung response
,”
J. Acoust. Soc. Am.
63
,
962
966
(
1978
).
9.
J. J.
Fredberg
and
A.
Hoenig
, “
Mechanical response of the lungs at high frequencies
,”
J. Biomech. Eng.
100
,
57
66
(
1978
).
10.
J. J.
Fredberg
and
J. A.
Moore
, “
The distributed response of complex branching duct networks
,”
J. Acoust. Soc. Am.
63
,
954
961
(
1978
).
11.
R. H.
Habib
,
R. B.
Chalker
,
B.
Suki
, and
A. C.
Jackson
, “
Airway geometry and wall mechanical properties estimated from subglottal input impedance in humans
,”
J. Appl. Physiol.
77
,
441
451
(
1994
).
12.
V. P.
Harper
,
S. S.
Kraman
,
H.
Pasterkamp
, and
G. R.
Wodicka
, “
An acoustic model of the respiratory tract
,”
IEEE Trans. Biomed. Eng.
48
,
543
550
(
2001
).
13.
V. P.
Harper
,
H.
Pasterkamp
,
H.
Kiyokawa
, and
G. R.
Wodicka
, “
Modeling and measurement of flow effects on tracheal sounds
,”
IEEE Trans. Biomed. Eng.
50
,
1
10
(
2003
).
14.
J. C.
Ho
,
M.
Zañartu
, and
G. R.
Wodicka
, “
An anatomically based, time-domain acoustic model of the subglottal system for speech production
,”
J. Acoust. Soc. Am.
129
,
1531
1547
(
2011
).
15.
J. P.
Mansfield
, “
Theory and application of acoustic reflectometry in the human body
,” Ph.D. thesis,
Purdue University
,
West Lafayette
,
1996
.
16.
K. N.
Stevens
,
Acoustic Phonetics
(
MIT Press
,
Cambridge, MA
,
1998
), pp.
1
607
.
17.
J.
van den Berg
, “
An electrical analogue of the trachea, lungs and tissues
,”
Acta Physiol. Pharmacol. Neerlandica
9
,
361
385
(
1960
).
18.
G. R.
Wodicka
,
K. N.
Stevens
,
H. L.
Golub
,
E. G.
Cravalho
, and
D. C.
Shannon
, “
A model of acoustic transmission in the respiratory system
,”
IEEE Trans. Biomed. Eng.
36
,
925
934
(
1989
).
19.
M.
Zañartu
,
L.
Mongeau
, and
G. R.
Wodicka
, “
Influence of acoustic loading on an effective single mass model of the vocal folds
,”
J. Acoust. Soc. Am.
121
,
1119
1129
(
2007
).
20.
X.
Chi
and
M.
Sonderegger
, “
Subglottal coupling and its influence on vowel formants
,”
J. Acoust. Soc. Am.
122
,
1735
1745
(
2007
).
21.
R. H.
Habib
,
B.
Suki
,
J. H. T.
Bates
, and
A. C.
Jackson
, “
Serial distribution of airway mechanical properties in dogs: Effects of histamine
,”
J. Appl. Physiol.
77
,
554
566
(
1994
).
22.
H.
Hudde
and
H.
Slatky
, “
The acoustical input impedance of excised human lungs—measurements and model matching
,”
J. Acoust. Soc. Am.
86
,
475
492
(
1989
).
23.
K.
Ishizaka
,
M.
Matsudaira
, and
T.
Kaneko
, “
Input acoustic-impedance measurement of the subglottal system
,”
J. Acoust. Soc. Am.
60
,
190
197
(
1976
).
24.
A. C.
Jackson
,
J. P.
Butler
, and
R. W.
Pyle
, Jr.
, “
Acoustic input impedance of excised dog lungs
,”
J. Acoust. Soc. Am.
64
,
1020
1026
(
1978
).
25.
S. M.
Lulich
, “
The role of lower airway resonances in defining vowel feature contrasts
,” Ph.D. thesis,
Mass. Inst. Tech.
,
Cambridge, MA
,
2006
.
26.
S. M.
Lulich
, “
Subglottal resonances and distinctive features
,”
J. Phonet.
38
,
20
32
(
2010
).
27.
B.
Suki
,
R. H.
Habib
, and
A. C.
Jackson
, “
Wave propagation, input impedance, and wall mechanics of the calf trachea from 16 to 1,600 Hz
,”
J. Appl. Physiol.
75
,
2755
2766
(
1993
).
28.
C. H.
Shadle
, “
The aerodynamics of speech
,” in
The Handbook of Phonetic Sciences
, edited by
W. J.
Hardcastle
and
J.
Laver
(
Blackwell Publishers
,
Oxford, UK
,
1999
), pp.
33
64
.
29.
R. K.
Lambert
,
E. M.
Baile
,
R.
Moreno
,
J.
Bert
, and
P. D.
Paré
, “
A method for estimating the Young's modulus of complete tracheal cartilage rings
,”
J. Appl. Physiol.
70
,
1152
1159
(
1991
).
30.
J. K.
Rains
,
J. L.
Bert
,
C. R.
Roberts
, and
P. D.
Paré
, “
Mechanical properties of human tracheal cartilage
,”
J. Appl. Physiol.
72
,
219
225
(
1992
).
31.
C. R.
Roberts
,
J. K.
Rains
,
P. D.
Paré
,
D. C.
Walker
,
B.
Wiggs
, and
J. L.
Bert
, “
Ultrastructure and tensile properties of human tracheal cartilage
,”
J. Biomech.
31
,
81
86
(
1997
).
32.
S. J.
Gunst
and
J. Q.
Stropp
, “
Pressure-volume and length-stress relationships in canine bronchi in vitro
,”
J. Appl. Physiol.
64
,
2522
2531
(
1988
).
33.
M.
Karolewski
, “
Tracer, v. 1.7
,” http://sites.google.com/site/kalypsosimulation/Home/data-analysis-software-1 (Last viewed 4/29/
2015
).
34.
C. M.
McCullagh
,
L. M.
Soby
,
A. M.
Jamieson
, and
J.
Blackwell
, “
Viscoelastic behavior of fractionated ovine submaxillary mucin
,”
Biopolymers
32
,
1665
1674
(
1992
).
35.
J. L.
Flanagan
,
Speech Analysis, Synthesis and Perception
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1972
), pp.
1
444
.
36.
A. H.
Benade
, “
On the propagation of sound waves in a cylindrical conduit
,”
J. Acoust. Soc. Am.
44
,
616
623
(
1968
).
37.
D. H.
Keefe
, “
Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and nonisothermal boundary conditions
,”
J. Acoust. Soc. Am.
75
,
58
62
(
1984
).
38.
E. R.
Weibel
,
Morphometry of the Human Lung
(
Springer
,
Berlin
,
1963
), pp.
1
151
.
39.
K.
Horsfield
,
G.
Dart
,
D. E.
Olson
,
G. F.
Filly
, and
G.
Cumming
, “
Models of the human bronchial tree
,”
J. Appl. Physiol.
31
,
207
217
(
1971
).
40.
S. M.
Lulich
, “
Derivation and acoustic effects of an area function for the laryngeal subglottis
,”
Phonetician
105–106
,
27
38
(
2013
).
41.
P.
Šidlof
,
J. G.
Švec
,
J.
Horáček
,
J.
Veselý
,
I.
Klepáček
, and
R.
Havlík
, “
Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production
,”
J. Biomechan.
41
,
985
995
(
2008
).
42.
D. A.
Berry
,
D. W.
Montequin
, and
N.
Tayama
, “
High-speed digital imaging of the medial surface of the vocal folds
,”
J. Acoust. Soc. Am.
110
,
2539
2547
(
2001
).
43.
H.
Gray
,
Anatomy of the Human Body
(
Lea and Febiger
,
Philadelphia, PA
,
1918
), p.
951
.
44.
J. P.
Charpie
and
C. B.
Burroughs
, “
An analytic model for the free in-plane vibration of beams of variable curvature and depth
,”
J. Acoust. Soc. Am.
94
,
866
879
(
1993
).
45.
A.
Alwan
,
S. M.
Lulich
, and
M. S.
Sommers
,
The Subglottal Resonance Database
(
Linguistic Data Consortium
,
Philadelphia, PA
,
2015
).
46.
I. R.
Titze
, “
Nonlinear source-filter coupling in phonation: Theory
,”
J. Acoust. Soc. Am.
123
,
2733
2749
(
2008
).
47.
M.
Zañartu
,
D. D.
Mehta
,
J. C.
Ho
,
G. R.
Wodicka
, and
R. E.
Hillman
, “
Observation and analysis of in vivo vocal fold tissue instabilities produced by nonlinear source-filter coupling: A case study
,”
J. Acoust. Soc. Am.
129
,
326
339
(
2011
).
48.
Z.
Zhang
,
J.
Neubauer
, and
D. A.
Berry
, “
The influence of subglottal acoustics on laboratory models of phonation
,”
J. Acoust. Soc. Am.
120
,
1558
1569
(
2006
).
49.
R. H.
Baroni
,
R. C.
Chate
,
D. N.
da Costa
, and
P. M.
Boiselle
, “
Tracheobronchomalacia
,” in
CT of the Airways
, edited by
P. M.
Boiselle
and
D. A.
Lynch
(
Humana
,
Totowa, NJ
,
2008
), pp.
191
212
.
50.
M. N.
Oliver
,
B.
Fabry
,
A.
Marinkovic
,
S. M.
Mijailovich
,
J. P.
Butler
, and
J. J.
Fredberg
, “
Airway hyperresponsiveness, remodeling, and smooth muscle mass: Right answer, wrong reason?
,”
Am. J. Respir. Cell Mol. Biol.
37
,
264
272
(
2007
).
You do not currently have access to this content.