Accurate measurement of high-amplitude, broadband shock pulses in air is an important part of laboratory-scale experiments in atmospheric acoustics. Although various methods have been developed, specific drawbacks still exist and need to be addressed. Here, a schlieren optical method was used to reconstruct the pressure signatures of nonlinear spherically diverging short acoustic pulses generated using an electric spark source (2.5 kPa, 33 μs at 10 cm from the source) in homogeneous air. A high-speed camera was used to capture light rays deflected by refractive index inhomogeneities, caused by the acoustic wave. Pressure waveforms were reconstructed from the light intensity patterns in the recorded images using an Abel-type inversion method. Absolute pressure levels were determined by analyzing at different propagation distances the duration of the compression phase of pulses, which changed due to nonlinear propagation effects. Numerical modeling base on the generalized Burgers equation was used to evaluate the smearing of the waveform caused by finite exposure time of the high-speed camera and corresponding limitations in resolution of the schlieren technique. The proposed method allows the study of the evolution of spark-generated shock waves in air starting from the very short distances from the spark, 30 mm, up to 600 mm.

1.
B.
Lipkens
and
D. T.
Blackstock
, “
Model experiment to study sonic boom propagation through turbulence. Part I: Model experiment and general results
,”
J. Acoust. Soc. Am.
103
,
148
158
(
1998
).
2.
B.
Lipkens
and
D. T.
Blackstock
, “
Model experiment to study sonic boom propagation through turbulence. Part II: Effect of turbulence intensity and propagation distance through turbulence
,”
J. Acoust. Soc. Am.
104
,
1301
1309
(
1998
).
3.
B.
Lipkens
, “
Model experiment to study sonic boom propagation through turbulence. Part III: Validation of sonic boom propagation models
,”
J. Acoust. Soc. Am.
111
,
509
519
(
2002
).
4.
B. A.
Davy
and
D. T.
Blackstock
, “
Measurements of the refractive and diffraction of a short N wave by a gas-filled soap bubble
,”
J. Acoust. Soc. Am.
49
,
732
737
(
1971
).
5.
P.
Blanc-Benon
,
S.
Ollivier
,
K.
Attenborough
, and
Q.
Qin
, “
Laboratory experiments to study N-waves propagation: Effects of turbulence and/or ground roughness
,” in
17th International Symposium on Nonlinear Acoustics
,
Manchester, UK
(
2005
), Vol.
838
, pp.
651
654
.
6.
M.
Averiyanov
,
S.
Ollivier
,
V.
Khokhlova
, and
P.
Blanc-Benon
, “
Random focusing of nonlinear acoustic N-waves in fully developed turbulence: Laboratory scale experiment
,”
J. Acoust. Soc. Am.
130
(
6
),
3595
3607
(
2011
).
7.
E.
Salze
,
P.
Yuldashev
,
S.
Ollivier
,
V.
Khokhlova
, and
P.
Blanc-Benon
, “
Laboratory-scale experiment to study nonlinear N-wave distortion by thermal turbulence
,”
J. Acoust. Soc. Am.
136
,
556
566
(
2014
).
8.
V.
Grillon
,
X.
Meynial
, and
J. D.
Polack
, “
What can auralisation in small scale models achieve?
,”
Acta Acust.
82
,
362
364
(
1996
).
9.
J.
Picaut
and
L.
Simon
, “
A scale model experiment for the study of sound propagation in urban areas
,”
Appl. Acoust.
62
,
327
340
(
2001
).
10.
M.
Almgren
, “
Acoustic boundary layer influence on scale model simulation of sound propagation: Experimental verification
,”
J. Sound Vib.
110
,
247
259
(
1986
).
11.
W. M.
Wright
, “
Propagation in air of N waves produced by sparks
,”
J. Acoust. Soc. Am.
73
,
1948
1955
(
1983
).
12.
P.
Yuldashev
,
S.
Ollivier
,
M.
Averiyanov
,
O.
Sapozhnikov
,
V.
Khokhlova
, and
P.
Blanc-Benon
, “
Nonlinear propagation of spark-generated N-waves in air: Modeling and measurements using acoustical and optical methods
,”
J. Acoust. Soc. Am.
128
,
3321
3333
(
2010
).
13.
L.
Orenstein
, “
The rise time of N-waves produced by sparks
,” Technical Report, Appl. Res. Lab., Univ. Texas Austin,
ARL-TR-82-51
(
1982
).
14.
Q.
Qin
and
K.
Attenborough
, “
Characteristics and application of laser-generated acoustic shock waves in air
,”
Appl. Acoust.
65
,
325
340
(
2004
).
15.
A.
Loubeau
,
V. W.
Sparrow
,
L. L.
Pater
, and
W. M.
Wright
, “
High-frequency measurements of blast wave propagation
,”
J. Acoust. Soc. Am.
120
,
EL29
EL35
(
2006
).
16.
J. W. M.
DuMond
,
E. R.
Cohen
,
W. K. H.
Panofsky
, and
E.
Deeds
, “
A determination of the waveforms and laws of propagation and dissipation of ballistic shock waves
,”
J. Acoust. Soc. Am.
18
,
97
118
(
1946
).
17.
M. N.
Plooster
, “
Shock waves from line sources. Numerical solutions and experimental measurements
,”
Phys. Fluids
13
,
2665
2675
(
1970
).
18.
H. L.
Brode
, “
Blast wave from a spherical charge
,”
Phys. Fluids
2
,
217
229
(
1959
).
19.
P. V.
Yuldashev
,
M. V.
Averiyanov
,
V. A.
Khokhlova
,
S.
Ollivier
, and
P.
Blanc-Benon
, “
Nonlinear spherically divergent shock waves propagating in a relaxing medium
,”
Acoust. Phys.
54
,
32
41
(
2008
).
20.
M.
Averiyanov
,
P.
Blanc-Benon
,
R. O.
Cleveland
, and
V.
Khokhlova
, “
Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media
,”
J. Acoust. Soc. Am.
129
(
4
),
1760
1772
(
2011
).
21.
W. M.
Wright
and
J. L.
McKittrick
, “
Diffraction of spark-produced acoustic impulses
,”
Am. J. Phys.
35
,
124
128
(
1967
).
22.
W. M.
Wright
and
N. W.
Medendorp
, “
Acoustic radiation from a finite line source with N-wave excitation
,”
J. Acoust. Soc. Am.
43
,
966
971
(
1968
).
23.
T.
Mizukaki
, “
Application of digital phase-shift holographic interferometry to weak shock waves propagating at Mach 1.007
,”
Shock Waves
20
,
19
27
(
2010
).
24.
G.
Smeets
, “
Laser interference microphone for ultrasonics and nonlinear acoustics
,”
J. Acoust. Soc. Am.
61
,
872
875
(
1977
).
25.
B.
André
,
T.
Castelain
, and
C.
Bailly
, “
Broadband shock-associated noise in screeching and non-screeching underexpanded supersonic jets
,”
AIAA J.
51
(
3
),
665
673
(
2013
).
26.
B.
André
,
T.
Castelain
, and
C.
Bailly
, “
Experimental exploration of underexpanded supersonic jets
,”
Shock Waves
24
,
21
32
(
2014
).
27.
G. S.
Settles
,
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media
(
Springer-Verlag
,
Heidelberg
,
2001
), pp.
27
, 39–52, 338–340.
28.
W.
Merzkirch
,
Flow Visualization
(
Academic
,
New York
,
1974
), pp.
126
134
.
29.
R. N.
Bracewell
,
The Fourier Transform and Its Applications
(
McGraw-Hill
,
New York
,
2000
), pp.
351
353
.
30.
A. D.
Pierce
,
Acoustics: An Introduction to Its Physical Principles and Applications
(
Acoustical Society of America
,
New York
,
1989
), pp.
603
605
.
31.
J.
Panda
and
G.
Adamovsky
, “
Laser light scattering by shock waves
,”
Phys. Fluids
7
,
2271
2279
(
1995
).
32.
P.
Yuldashev
,
M.
Averiyanov
,
V.
Khokhlova
,
O.
Sapozhnikov
,
S.
Ollivier
, and
P.
Blanc-Benon
, “
Measurement of shock N-waves using optical methods
,” in
10eme Congres Francais d'Acoustique, Lyon
, CD (
2010
). Available online at https://tel.archives-ouvertes.fr/CFA2010-APU4/hal-00539747v1 (Last viewed 6 March 2015).
33.
J. W.
Reed
, “
Atmospheric attenuation of explosion waves
,”
J. Acoust. Soc. Am.
61
,
39
47
(
1977
).
You do not currently have access to this content.