This paper presents estimated water-column and seabed parameters and uncertainties for a shallow-water site in the Chukchi Sea, Alaska, from trans-dimensional Bayesian inversion of the dispersion of water-column acoustic modes. Pulse waveforms were recorded at a single ocean-bottom hydrophone from a small, ship-towed airgun array during a seismic survey. A warping dispersion time-frequency analysis is used to extract relative mode arrival times as a function of frequency for source-receiver ranges of 3 and 4 km which are inverted for the water sound-speed profile (SSP) and subbottom geoacoustic properties. The SSP is modeled using an unknown number of sound-speed/depth nodes. The subbottom is modeled using an unknown number of homogeneous layers with unknown thickness, sound speed, and density, overlying a halfspace. A reversible-jump Markov-chain Monte Carlo algorithm samples the model parameterization in terms of the number of water-column nodes and subbottom interfaces that can be resolved by the data. The estimated SSP agrees well with a measured profile, and seafloor sound speed is consistent with an independent headwave arrival-time analysis. Environmental properties are required to model sound propagation in the Chukchi Sea for estimating sound exposure levels and environmental research associated with marine mammal localization.

1.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics, Series in Modern Acoustic and Signal Processing
(
AIP Press
,
New York
,
1993
), pp.
271
333
.
2.
J.
Bonnel
and
N. R.
Chapman
, “
Geoacoustic inversion in a dispersive waveguide using warping operators
,”
J. Acoust. Soc. Am.
130
,
EL101
EL107
(
2011
).
3.
J.
Zeng
,
N. R.
Chapman
, and
J.
Bonnel
, “
Inversion of seabed attenuation using time-warping of close range data
,”
J. Acoust. Soc. Am.
134
,
EL394
EL399
(
2013
).
4.
J.
Bonnel
,
C.
Gervaise
,
B.
Nicolas
, and
J. I.
Mars
, “
Single-receiver geoacoustic inversion using modal reversal
,”
J. Acoust. Soc. Am.
131
,
119
128
(
2012
).
5.
J.
Bonnel
,
B.
Nicolas
,
J. I.
Mars
, and
S. C.
Walker
, “
Estimation of modal group velocities with a single receiver for geoacoustic inversion in shallow water
,”
J. Acoust. Soc. Am.
128
,
719
727
(
2010
).
6.
J.
Bonnel
,
S. E.
Dosso
, and
N. R.
Chapman
, “
Bayesian geoacoustic inversion of single hydrophone light bulb data using warping dispersion analysis
,”
J. Acoust. Soc. Am.
134
,
120
130
(
2013
).
7.
G.
Potty
,
J.
Miller
,
P.
Wilson
,
J.
Lynch
, and
A.
Newhall
, “
Geoacoustic inversion using combustive sound source signals
,”
J. Acoust. Soc. Am.
124
,
EL146
EL150
(
2008
).
8.
G.
Potty
,
J.
Miller
,
J.
Lynch
, and
K.
Smith
, “
Tomographic inversion for sediment parameters in shallow water
,”
J. Acoust. Soc. Am.
108
,
973
986
(
2000
).
9.
G.
Potty
,
J.
Miller
, and
J.
Lynch
, “
Inversion for sediment geoacoustic properties at the New England Bight
,”
J. Acoust. Soc. Am.
114
,
1874
1887
(
2003
).
10.
G.
Potty
,
J.
Miller
,
P.
Dahl
, and
C.
Lazauski
, “
Geoacoustic inversion results from the ASIAEX East China Sea Experiment
,”
IEEE J. Ocean. Eng.
29
,
1000
1010
(
2004
).
11.
C.
Geyer
and
J.
Moller
, “
Simulation procedures and likelihood inference for spatial point processes
,”
Scand. J. Stat.
21
,
359
373
(
1994
).
12.
P. J.
Green
, “
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
,”
Biometrika
82
,
711
732
(
1995
).
13.
A.
Malinverno
, “
Parsimonious Bayesian Markov chain Monte Carlo inversion in a non-linear geophysical problem
,”
Geophys. J. Int.
151
,
675
688
(
2002
).
14.
M.
Sambridge
,
K.
Gallagher
,
A.
Jackson
, and
P.
Rickwood
, “
Trans-dimensional inverse problems, model comparison and the evidence
,”
Geophys. J. Int.
167
,
528
542
(
2006
).
15.
G.
Steininger
,
J.
Dettmer
,
S. E.
Dosso
, and
C. W.
Holland
, “
Trans-dimensional joint inversion of seabed scattering and reflection data
,”
J. Acoust. Soc. Am.
133
,
1347
1357
(
2013
).
16.
C. M.
Reiser
,
D. W.
Funk
,
R.
Rodrigues
, and
D.
Hannay
, “
Marine mammal monitoring and mitigation during open water seismic exploration by Shell Offshore, Inc. in the Alaskan Chukchi Sea, July-October 2009: 90-day report
,”
Technical Report P1112-1
, LGL Alaska Research Associates Inc. and JASCO Research Ltd. (
2010
), available at http://www.nmfs.noaa.gov/pr/pdfs/permits/shell_openwater_report2009.pdf.
17.
H. M.
Feder
,
A. S.
Naidu
,
S. C.
Jewett
,
J. M.
Hameedi
,
W. R.
Johnson
, and
T. E.
Whitledge
, “
The northeastern Chukchi Sea: Benthos-environmental interactions
,”
Mar. Ecol. Prog. Ser.
111
,
171
190
(
1994
).
18.
A. L.
Blanchard
,
C. L.
Parris
,
A. L.
Knowlton
, and
N. R.
Wade
, “
Benthic ecology of the northeastern Chukchi Sea. Part I. Environmental characteristics and macrofaunal community structure, 2008–2010
,”
Cont. Shelf Res.
67
,
52
66
(
2013
).
19.
E. K.
Westwood
,
C. T.
Tindle
, and
N. R.
Chapman
, “
A normal mode model for acousto-elastic ocean environments
,”
J. Acoust. Soc. Am.
100
,
3631
3645
(
1996
).
20.
G.
Le Touzé
,
B.
Nicolas
,
J. I.
Mars
, and
J.
Lacoume
, “
Matched representations and filters for guided waves
,”
IEEE Trans. Signal Process.
57
,
1783
1795
(
2009
).
21.
J.
Dettmer
,
S. E.
Dosso
, and
C. W.
Holland
, “
Trans-dimensional geoacoustic inversion
,”
J. Acoust. Soc. Am.
128
,
3393
3405
(
2010
).
22.
S. E.
Dosso
,
J.
Dettmer
,
G.
Steininger
, and
C.
Holland
, “
Efficient trans-dimensional Bayesian inversion for geoacoustic profile estimation
,”
Inverse Problems
30
,
114018
(
2014
).
23.
D. R.
Jackson
and
M. D.
Richardson
,
High-Frequency Seafloor Acoustics
, 1st ed. (
Springer
,
New York
,
2007
), pp.
178
200
.
24.
J. E.
Quijano
,
S. E.
Dosso
,
J.
Dettmer
,
L. M.
Zurk
,
M.
Siderius
, and
C.
Harrison
, “
Bayesian geoacoustic inversion using wind-driven ambient noise
,”
J. Acoust. Soc. Am.
131
,
2658
2667
(
2012
).
25.
G.
Steininger
, “
Determination of seabed acoustic scattering properties by trans-dimensional Bayesian inversion
,” Ph.D. thesis,
School of Earth and Ocean Sciences, University of Victoria
,
Victoria, BC, Canada
(
2013
).
26.
R. A.
Woodgate
,
K.
Aagaard
, and
T. J.
Weingartner
, “
A year in the physical oceanography of the Chukchi Sea: Moored measurements from autumn 1990–1991
,”
Deep Sea Res. II
52
,
3116
3149
(
2005
).
27.
W. M.
Telford
,
L. P.
Geldart
,
R. E.
Sheriff
, and
D. A.
Keys
,
Applied Geophysics
(
Cambridge University Press
,
Cambridge, UK
,
1976
), pp.
218
441
.
28.
D. J. C.
MacKay
,
Information Theory, Inference, and Learning Algorithms
(
Cambridge University Press
,
Cambridge, UK
,
2003
), pp.
343
386
.
29.
J.
Dettmer
and
S. E.
Dosso
, “
Trans-dimensional matched-field geoacoustic inversion with hierarchical error models and interacting Markov chains
,”
J. Acoust. Soc. Am.
132
,
2239
2250
(
2012
).
30.
C. J.
Geyer
,
Introduction to Markov Chain Monte Carlo
(
Springer
,
New York
,
2011
), pp.
3
47
.
31.
S. E.
Dosso
,
C. W.
Holland
, and
M.
Sambridge
, “
Parallel tempering for strongly nonlinear geoacoustic inversion
,”
J. Acoust. Soc. Am.
132
,
3030
3040
(
2012
).
32.
M.
Sambridge
, “
A parallel tempering algorithm for probabilistic sampling and multimodal optimization
,”
Geophys. J. Int.
196
,
357
374
(
2014
).
33.
D. J.
Earl
and
M. W.
Deem
, “
Parallel tempering: Theory, applications, and new perspectives
,”
Phys. Chem. Chem. Phys.
7
,
3910
3916
(
2005
).
34.
A.
Jasra
,
D. A.
Stephens
, and
C.
Holmes
, “
Population-based reversible jump Markov chain Monte Carlo
,”
Biometrika
94
,
787
807
(
2007
).
35.
A.
Jasra
,
D. A.
Stephens
, and
C. C.
Holmes
, “
On population-based simulation for static inference
,”
Stat. Comp.
17
,
263
279
(
2007
).
36.
A. F. M.
Smith
, “
Bayesian computational methods
,”
Philos. Trans. R. Soc. Lond.
337
,
369
386
(
1991
).
37.
J.
Dettmer
,
S.
Molnar
,
G. A. M. W.
Steininger
,
S. E.
Dosso
, and
J. F.
Cassidy
, “
Trans-dimensional inversion of microtremor array dispersion data with hierarchical autoregressive error models
,”
Geophys. J. Int.
188
,
719
734
(
2012
).
You do not currently have access to this content.