The modal wavenumber of rectangular, simply supported, isotropic thin plates was theoretically shown to be related to the zeros in the wavenumber spectrum and not to the peaks, resulting in an error between the actual modal wavenumber and location of the wavenumber spectrum peak for low mode orders. This theoretical proof is confirmed by experimental results reported in this letter.

1.
N. C.
Martin
and
P.
Leehey
, “
Low wavenumber wall pressure measurements using a rectangular membrane as a spatial filter
,”
J. Sound Vib.
52
(
1
),
95
120
(
1977
).
2.
Y. F.
Hwang
and
G.
Maidanik
, “
A wavenumber analysis of the coupling of a structural mode and flow turbulence
,”
J. Sound Vib.
142
(
1
),
135
142
(
1990
).
3.
P. G.
Bremner
and
J. F.
Wilby
, “
Aero-vibro-acoustics: Problem statement and methods for simulation-based design solutions
,” in
Proceedings of the 8th AIAA/CEAS Aeroacoustics Conference
, AIAA Paper No. 2002-1551 (
2002
), pp.
1
11
.
4.
S. A.
Hambric
,
Y. F.
Hwang
, and
W. K.
Bonness
, “
Vibrations of plates with clamped and free edges excited by low-speed turbulent boundary layer flow
,”
J. Fluid Struct.
19
,
93
110
(
2004
).
5.
N. D.
Evans
,
D. E.
Capone
, and
W. K.
Bonness
, “
Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data over smooth and rough surfaces in pipe flow
,”
J. Sound Vib.
332
,
3463
3473
(
2013
).
6.
W. K.
Bonness
,
D. E.
Capone
, and
S. A.
Hambric
, “
Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data on a cylinder in pipe flow
,”
J. Sound Vib.
329
,
4166
4180
(
2010
).
7.
F.
Fahy
and
P.
Gardonio
,
Sound and Structural Vibration: Radiation, Transmission and Response
, 2nd ed. (
Academic
,
Oxford, UK
,
2007
), pp.
181
183
.
8.
M. R.
Shepherd
and
S. A.
Hambric
, “
Comment on plate modal wavenumber transforms in Sound and Structural Vibration [Academic Press (1987, 2007)] (L)
,”
J. Acoust. Soc. Am.
132
(
4
),
2155
2157
(
2012
).
9.
O.
Robin
,
A.
Berry
, and
S.
Moreau
, “
Experimental vibroacoustic testing of plane panels using synthesized random pressure fields
,”
J. Acoust. Soc. Am.
135
(
6
),
3434
3445
(
2014
).
10.
A.
Berry
,
O.
Robin
, and
F.
Pierron
, “
Identification of dynamic loading on a bending plate using the virtual fields method
,”
J. Sound Vib.
333
(
26
),
7151
7164
(
2014
).
You do not currently have access to this content.