Passive acoustic mapping (PAM) is a promising imaging method that enables real-time three-dimensional monitoring of ultrasound therapy through the reconstruction of acoustic emissions passively received on an array of ultrasonic sensors. A passive beamforming method is presented that provides greatly improved spatial accuracy over the conventionally used time exposure acoustics (TEA) PAM reconstruction algorithm. Both the Capon beamformer and the robust Capon beamformer (RCB) for PAM are suggested as methods to reduce interference artifacts and improve resolution, which has been one of the experimental issues previously observed with TEA. Simulation results that replicate the experimental artifacts are shown to suggest that bubble interactions are the chief cause. Analysis is provided to show that these multiple bubble artifacts are generally not reduced by TEA, while Capon-based methods are able to reduce the artifacts. This is followed by experimental results from in vitro experiments and in vivo oncolytic viral therapy trials that show improved results in PAM, where RCB is able to more accurately localize the acoustic activity than TEA.

1.
C.-C.
Coussios
and
R.
Roy
, “
Applications of acoustics and cavitation to noninvasive therapy and drug delivery
,”
Annu. Rev. Fluid. Mech.
40
,
395
420
(
2008
).
2.
M.
Gyöngy
and
C.-C.
Coussios
, “
Passive spatial mapping of inertial cavitation during HIFU exposure
,”
IEEE Trans. Biomed. Eng.
57
(
1
),
48
56
(
2010
).
3.
C.
Jensen
,
R.
Ritchie
,
M.
Gyöngy
,
J.
Collin
,
T.
Leslie
, and
C.-C.
Coussios
, “
Spatiotemporal monitoring of high-intensity focused ultrasound therapy passive acoustic mapping
,”
Radiology
262
(
1
),
252
261
(
2012
).
4.
S.
Mo
and
C.-C.
Coussios
, “
Ultrasound-enhanced drug delivery for cancer
,”
Expert Opin. Drug Delivery
9
(
12
),
1525
1538
(
2012
).
5.
M.
Bazan-Peregrino
,
B.
Rifai
,
R.
Carlisle
,
J.
Choi
,
C.
Arvanitis
,
L.
Seymour
, and
C.-C.
Coussios
, “
Cavitation-enhanced delivery of a conditionally replicating oncolytic adenovirus by therapeutic ultrasound
,”
J. Controlled Release
169
,
40
47
(
2013
).
6.
C.
Arvanitis
,
M.
Livingstone
, and
N.
McDannold
, “
Combined ultrasound and MR imaging to guide focused ultrasound therapies in the brain
,”
Phys. Med. Biol.
58
(
14
),
4749
4761
(
2013
).
7.
R.
Jones
,
M.
O'Reilly
, and
K.
Hynynen
, “
Transcranial passive acoustic mapping with hemispherical sparse arrays using ct-based skull-specific aberration corrections: A simulation study
,”
Phys. Med. Biol.
58
(
14
),
4981
5005
(
2013
).
8.
V.
Salgaonkar
,
S.
Datta
,
C.
Holland
, and
T.
Mast
, “
Passive cavitation imaging with ultrasound arrays
,”
J. Acoust. Soc. Am.
126
(
6
),
3071
3083
(
2009
).
9.
K.
Haworth
,
T.
Mast
,
K.
Radhakrishnan
,
M.
Burgess
,
J.
Kopechek
,
S.
Huang
,
D.
McPherson
, and
C.
Holland
, “
Passive imaging with pulsed ultrasound insonations
,”
J. Acoust. Soc. Am.
132
(
1
),
544
553
(
2012
).
10.
C.
Coviello
,
R.
Kozick
,
A.
Hurrell
,
P.
Smith
, and
C.-C.
Coussios
, “
Thin-film sparse boundary array design for passive acoustic mapping during ultrasound therapy
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
59
(
10
),
2322
2330
(
2012
).
11.
S.
Norton
and
I.
Won
, “
Time exposure acoustics
,”
IEEE Trans. Geosci. Remote Sens.
38
(
3
),
1337
1343
(
2000
).
12.
M.
Gyöngy
, “
Passive cavitation mapping for monitoring ultrasound therapy
,” Ph.D. dissertation,
University of Oxford
, Oxford, United Kingdom,
2011
.
13.
J.
Capon
, “
High-resolution frequency-wavenumber spectrum analysis
,”
Proc. IEEE
57
(
8
),
1408
1418
(
1969
).
14.
J.-F.
Synnevåg
,
A.
Austeng
, and
S.
Holm
, “
Adaptive beamforming applied to medical ultrasound imaging
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
54
(
8
),
1606
1613
(
2007
).
15.
J.-F.
Synnevåg
,
A.
Austeng
, and
S.
Holm
, “
Benefits of high-resolution beamforming in medical ultrasound imaging
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
56
(
9
),
1868
1879
(
2009
).
16.
I.
Holfort
,
F.
Gran
, and
J.
Jensen
, “
Broadband minimum variance beamforming for ultrasound imaging
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
56
(
2
),
314
325
(
2009
).
17.
P.
Stoica
,
Z.
Wang
, and
J.
Li
, “
Robust capon beamforming
,”
IEEE Signal Proc. Lett.
10
(
6
),
172
175
(
2003
).
18.
J.
Li
,
P.
Stoica
, and
Z.
Wang
, “
On robust capon beamforming and diagonal loading
,”
IEEE Trans. Signal Proc.
51
(
7
),
1702
1715
(
2003
).
19.
Z.
Wang
,
J.
Li
, and
R.
Wu
, “
Time-delay- and time-reversal-based robust capon beamformers for ultrasound imaging
,”
IEEE Trans. Med. Imag.
24
(
10
),
1308
1322
(
2005
).
20.
B.
Guo
,
J.
Li
,
H.
Zmuda
, and
M.
Sheplak
, “
Multifrequency microwave-induced thermal 1 acoustic imaging for breast cancer detection
,”
IEEE Trans. Biomed. Eng.
54
(
11
),
2000
2010
(
2007
).
21.
Y.
Xie
,
B.
Guo
,
L.
Xu
,
J.
Li
, and
P.
Stoica
, “
Multistatic adaptive microwave imaging for early breast cancer detection
,”
IEEE Trans. Biomed. Eng.
53
(
8
),
1647
1657
(
2006
).
22.

The term “passive” is used because, unlike pulse-echo methods, the technique makes no use of any prior information relating to the timing or amplitude of the transmitted pulse in order to detect or localize sound sources (Refs. 23 and 24).

23.
S. I.
Madanshetty
,
R. A.
Roy
, and
R. E.
Apfel
, “
Acoustic microcavitation: Its active and passive acoustic detection
,”
J. Acoust. Soc. Am.
90
(
3
),
1515
1526
(
1991
).
24.
R. O.
Cleveland
,
O. A.
Sapozhnikov
,
M. R.
Bailey
, and
L. A.
Crum
, “
A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro
,”
J. Acoust. Soc. Am.
107
,
1745
1758
(
2000
).
25.
In almost all practical cases, this would be in the near-field of the diagnostic array owing to frequency, speed of sound, and aperture size.
26.
J.
Choi
and
C.-C.
Coussios
, “
Spatio-temporal evolution of cavitation dynamics exhibited by flowing microbubbles during therapeutic ultrasound exposure
,”
J. Acoust. Soc. Am.
132
(
5
),
3538
3549
(
2012
).
27.
B. D.
Van Veen
and
K. M.
Buckley
, “
Beamforming: A versatile approach to spatial filtering
,”
ASSP Mag. IEEE
5
(2),
4
24
(
1998
).
28.
H. L.
Van Trees
,
Optimum Array Processing (Detection, Estimation, and Modulation Theory, Part IV)
(
Wiley-Interscience
,
New York
,
2002
).
29.
K.
Vokurka
, “
Cavitation noise modeling and analyzing
,” in
CD-ROM Proceedings of Forum Acousticum 2002
, Sevilla, Spain (Sociedad Espanola de Acústica,
2002
).
30.
K.
Vokurka
, “
A method for evaluating experimental data in bubble dynamics studies
,”
Czech. J. Phys. B
36
,
600
615
(
1986
).
31.
K.
Vokurka
, “
Experimental study of the bubble pulse
,”
Acustica
66
,
174
176
(
1988
).
32.
M.
Gyöngy
and
C.-C.
Coussios
, “
Passive cavitation mapping for localization and tracking of bubble dynamics
,”
J. Acoust. Soc. Am.
128
(
4
),
EL175
EL180
(
2010
).
33.
C.
Arvanitis
,
M.
Bazan-Peregrino
,
B.
Rifai
,
L.
Seymour
, and
C.-C.
Coussios
, “
Cavitation-enhanced extravasation for drug delivery
,”
Ultrasound Med. Biol.
37
(
11
),
1838
1852
(
2011
).
34.
V.
Reddy
,
A.
Paulraj
, and
T.
Kailath
, “
Performance analysis of the optimum beamformer in the presence of correlated sources and its behavior under spatial smoothing
,”
IEEE Trans. Acoust., Speech, Signal Process.
35
(
7
),
927
936
(
1987
).
35.
H.-D.
Liang
,
J.
Tang
, and
M.
Halliwell
, “
Sonoporation, drug delivery, and gene therapy
,”
Proc. IMechE Part H: J. Eng. in Med.
224
,
343
361
(
2010
).
36.
B.
Rifai
,
C.
Arvanitis
,
M.
Bazan-Peregrino
, and
C.-C.
Coussios
, “
Cavitation-enhanced delivery of macromolecules into an obstructed vessel
,”
J. Acoust. Soc. Am.
128
(
5
),
EL310
EL315
(
2010
).
You do not currently have access to this content.