For high intensity therapeutic ultrasound (HITU) devices, pre-clinical testing can include measurement of power, pressure/intensity and temperature distribution, acoustic and thermal simulations, and assessment of targeting accuracy and treatment monitoring. Relevant International Electrotechnical Commission documents recently have been published. However, technical challenges remain because of the often focused, large amplitude pressure fields encountered. Measurement and modeling issues include using hydrophones and radiation force balances at HITU power levels, validation of simulation models, and tissue-mimicking material (TMM) development for temperature measurements. To better understand these issues, a comparison study was undertaken between simulations and measurements of the HITU acoustic field distribution in water and TMM and temperature rise in TMM. For the specific conditions of this study, the following results were obtained. In water, the simulated values for p+ and p− were 3% lower and 10% higher, respectively, than those measured by hydrophone. In TMM, the simulated values for p+ and p− were 2% and 10% higher than those measured by hydrophone, respectively. The simulated spatial-peak temporal-average intensity values in water and TMM were greater than those obtained by hydrophone by 3%. Simulated and measured end-of-sonication temperatures agreed to within their respective uncertainties (coefficients of variation of approximately 20% and 10%, respectively).

1.
A. E.
Stewart
,
W. M.
Gedroyc
,
C. M.
Tempany
,
B. J.
Quade
,
Y.
Inbar
,
T.
Ehrenstein
,
A.
Shushan
,
J. T.
Hindley
,
R. D.
Goldin
,
M.
David
,
M.
Sklair
, and
J.
Rabinovici
, “
Focused ultrasound treatment of uterine fibroid tumors: Safety and feasibility of a non-invasive thermoablative technique
,”
Am. J. Obstet. Gynecol.
189
,
48
54
(
2003
).
2.
L.
Zhang
,
W. Z.
Chen
,
Y. J.
Liu
,
X.
Hu
,
K.
Zhou
,
L.
Chen
,
S.
Peng
,
H.
Zhu
,
H. L.
Zou
,
J.
Bai
, and
Z. B.
Wang
, “
Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus
,”
Eur. J. Radiol.
73
,
396
403
(
2010
).
3.
C.
Li
,
W.
Zhang
,
W.
Fan
,
J.
Huang
,
F.
Zhang
, and
P.
Wu
, “
Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound
,”
Cancer
116
,
3934
3942
(
2010
).
4.
J. E.
Kennedy
,
F.
Wu
,
G.
ter Haar
,
F. V.
Gleeson
,
R. R.
Phillips
,
M. R.
Middleton
, and
D.
Cranston
, “
High intensity focused ultrasound for the treatment of liver tumors
,”
Ultrasonics
42
,
931
935
(
2004
).
5.
F-J.
Murat
,
L.
Poissonnier
,
M.
Rabilloud
,
A.
Belot
,
R.
Bouvier
,
O.
Rouviere
,
J.-Y.
Chapelon
, and
A.
Gelet
, “
Mid-term results demonstrate salvage high-intensity focused ultrasound (HIFU) as an effective and acceptably morbid salvage treatment option for locally radiorecurrent prostate cancer
,”
Eur. Urol.
55
(
3
),
640
649
(
2009
).
6.
O.
Rouviere
,
N.
Girouin
,
L.
Glas
,
A.
Ben Cheikh
,
A.
Gelet
,
F.
Mege-Lechevallier
,
M.
Rabilloud
,
J.-Y.
Chapelon
, and
D.
Lyonnet
, “
Prostate cancer transrectal HIFU ablation: Detection of local recurrences using T2-weighted and dynamic contrast-enhanced MRI
,”
Eur. Radiol.
20
,
48
55
(
2010
).
7.
V. S.
Dogra
,
M.
Zhang
, and
S.
Bhatt
, “
High-intensity focused ultrasound (HIFU) therapy applications
,”
Ultrasound Clin.
4
(
3
),
307
321
(
2009
).
8.
IEC61161 -Ed2
, Ultrasonics—Power measurement—Radiation force balances and performance (International Electrotechnical Commission, Geneva, Switzerland,
2006
).
9.
S.
Maruvada
,
G. R.
Harris
,
B. A.
Herman
, and
R.
King
, “
Acoustic power calibration of high-intensity focused ultrasound transducers using a radiation force technique
,”
J. Acoust. Soc. Am.
121
(
3
),
1424
1439
(
2007
).
10.
IEC 62555
, Ultrasonics—Power measurement—Output power measurement for high intensity therapeutic ultrasound (HITU) transducers and systems (International Electrotechnical Commission, Geneva, Switzerland,
2013
).
11.
A.
Shaw
, “
A buoyancy method for the measurement of total ultrasound power generated by HIFU transducers
,”
Ultrasound Med. Biol.
34
(
8
),
1327
1342
(
2008
).
12.
IEC 62127-2 1.1
, Ultrasonics—Hydrophones—Part 2: Calibration for ultrasonic fields up to 40 MHz (International Electrotechnical Commission, Geneva, Switzerland,
2013
).
13.
IEC 62556 TS 1.0
, Surgical systems—Specification and measurement of field parameters for high intensity therapeutic ultrasound (HITU) transducers and systems (International Electrotechnical Commission, Geneva, Switzerland,
2014
).
14.
M. S.
Canney
,
M. R.
Bailey
,
L. A.
Crum
,
V. A.
Khokhlova
, and
O. A.
Sapozhnikov
, “
Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach
,”
J. Acoust. Soc. Am.
124
(
4
),
2406
2420
(
2008
).
15.
W.
Kreider
,
P. V.
Yuldashev
,
O. A.
Sapozhnikov
,
N.
Farr
,
A.
Partanen
,
M. R.
Bailey
, and
V. A.
Khokhlova
, “
Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
60
(
8
),
1683
1698
(
2013
).
16.
H. C.
Woodsum
and
P. J.
Westervelt
, “
A general theory for the scattering of sound by sound
,”
J. Sound Vib.
76
(
2
),
179
186
(
1981
).
17.
J.
Haller
,
J.
Klaus-Vitold
,
G.
Durando
, and
A.
Shaw
, “
A comparative evaluation of three hydrophones and a numerical model in high intensity focused ultrasound fields
,”
J. Acoust. Soc. Am.
131
(
2
),
1121
1130
(
2012
).
18.
J.
Soneson
, “
A user-friendly software package for HIFU simulation
,” in
Proceedings for International Society on Therapeutic Ultrasound
(
2008
), pp.
165
169
.
19.
O. V.
Bessonova
and
V.
Wilkens
, “
Membrane hydrophone measurement and numerical simulation of HIFU fields up to developed shock regimes
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
60
(
2
),
290
300
(
2013
).
20.
R. G.
Holt
and
R. A.
Roy
, “
Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material
,”
Ultrasound Med. Biol.
27
,
1399
1412
(
2001
).
21.
D.
Chen
,
T.
Fan
,
D.
Zhang
, and
J.
Wu
, “
A feasibility study of temperature rise measurement in a tissue phantom as an alternative way for characterization of the therapeutic high intensity focused ultrasonic field
,”
Ultrasonics
49
,
733
742
(
2009
).
22.
C. R.
Jensen
,
R. O.
Cleveland
, and
C. C.
Coussios
, “
Real-time temperature estimation and monitoring of HIFU ablation through a combined modeling and passive acoustic mapping approach
,”
Phys. Med. Biol.
58
,
5833
5850
(
2013
).
23.
R. O.
Cleveland
,
M. F.
Hamilton
, and
D. T.
Blackstock
, “
Time-domain modeling of finite-amplitude sound in relaxing fluids
,”
J. Acoust. Soc. Am.
99
(
6
),
3312
3316
(
1996
).
24.
R. L.
King
,
Y.
Liu
,
S.
Maruvada
,
B. A.
Herman
,
K. A.
Wear
, and
G. R.
Harris
, “
Development and characterization of a tissue-mimicking material for high-intensity focused ultrasound
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
(
7
),
1397
1405
(
2011
).
25.
S.
Maruvada
,
Y.
Liu
,
W. F.
Pritchard
,
B. A.
Herman
, and
G. R.
Harris
, “
Comparative study of temperature measurements in ex vivo swine muscle and a tissue-mimicking material during high intensity focused ultrasound exposures
,”
Phys. Med. Biol.
57
,
1
19
(
2012
).
26.
B. A.
Herman
and
G. R.
Harris
, “
Calibration of miniature ultrasonic receivers using a planar scanning technique
,”
J. Acoust. Soc. Am.
72
,
1357
1363
(
1982
).
27.
S. S.
Corbett
 III
, “
The influence of nonlinear fields on miniature hydrophone calibration using the planar scanar technique
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
60
(
2
),
290
300
(
2013
).
28.
NEMA UD-2-2004
,
Acoustic output measurement standard for diagnostic ultrasound equipment, Rev. 3
(American Institute of Ultrasound in Medicine, Laurel, MD, and National Electrical Manufacturers Association, Rosslyn, VA,
2004
).
29.
K.
Hynynen
, “
The threshold for thermally significant cavitation in dog's thigh muscle in vivo
,”
Ultrasound Med. Biol.
17
,
157
169
(
1991
).
30.
H.
Morris
,
I.
Rivens
,
A.
Shaw
, and
G.
ter Haar
, “
Investigation of the viscous heating artifact arising from the use of thermocouples in a focused ultrasound field
,”
Phys. Med. Biol.
53
,
4759
4776
(
2008
).
31.
R. J.
Dickinson
, “
Thermal conduction errors of manganin-constantan thermocouple arrays
,”
Phys. Med. Biol.
30
,
445
453
(
1985
).
32.
K. J.
Parker
, “
The thermal pulse decay technique for measuring ultrasonic absorption coefficients
,”
J. Acoust. Soc. Am.
74
,
1356
1361
(
1983
).
33.
D. R.
Bacon
and
A.
Shaw
, “
Experimental validation of predicted temperature rises in tissue-mimicking materials
,”
Phys. Med. Biol.
38
,
1647
1659
(
1993
).
34.
Y.
Liu
,
B. A.
Herman
,
J. E.
Soneson
, and
G. R.
Harris
, “
Thermal safety simulations of transient temperature rise during acoustic radiation force-based ultrasound elastography
,”
Ultrasound Med. Biol.
40
(
5
),
1001
1014
(
2014
).
35.
H. H.
Pennes
, “
Analysis of tissue and arterial blood temperatures in the resting human forearm
,”
J. Appl. Physiol.
1
,
93
122
(
1948
).
You do not currently have access to this content.