An optical characterization method is presented based on the use of the impulse response to characterize the damping imparted by the shell of an air-filled ultrasound contrast agent (UCA). The interfacial shell viscosity was estimated based on the unforced decaying response of individual echogenic liposomes (ELIP) exposed to a broadband acoustic impulse excitation. Radius versus time response was measured optically based on recordings acquired using an ultra-high-speed camera. The method provided an efficient approach that enabled statistical measurements on 106 individual ELIP. A decrease in shell viscosity, from 2.1 × 10−8 to 2.5 × 10−9 kg/s, was observed with increasing dilatation rate, from 0.5 × 106 to 1 × 107 s−1. This nonlinear behavior has been reported in other studies of lipid-shelled UCAs and is consistent with rheological shear-thinning. The measured shell viscosity for the ELIP formulation used in this study [κs = (2.1 ± 1.0) × 10−8 kg/s] was in quantitative agreement with previously reported values on a population of ELIP and is consistent with other lipid-shelled UCAs. The acoustic response of ELIP therefore is similar to other lipid-shelled UCAs despite loading with air instead of perfluorocarbon gas. The methods described here can provide an accurate estimate of the shell viscosity and damping for individual UCA microbubbles.

1.
T.
Faez
,
M.
Emmer
,
K.
Kooiman
,
M.
Versluis
,
A.
Van Der Steen
, and
N.
De Jong
, “
20 years of ultrasound contrast agent modeling
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
60
,
7
20
(
2013
).
2.
A. A.
Doinikov
and
A.
Bouakaz
, “
Review of shell models for contrast agent microbubbles
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
981
993
(
2011
).
3.
N. de
Jong
,
A.
Bouakaz
, and
P.
Frinking
, “
Basic acoustic properties of microbubbles
,”
Echocardiography
19
,
229
240
(
2002
).
4.
E.
Stride
, “
Physical principles of microbubbles for ultrasound imaging and therapy
,”
Cerebrovasc. Dis.
27
Suppl. 2,
1
13
(
2009
).
5.
Q.
Wen
,
S.
Wan
,
Z.
Liu
,
S.
Xu
,
H.
Wang
, and
B.
Yang
, “
Ultrasound contrast agents and ultrasound molecular imaging
,”
J. Nanosci. Nanotechnol.
14
,
190
209
(
2014
).
6.
J.
Castle
,
M.
Butts
,
A.
Healey
,
K.
Kent
,
M.
Marino
, and
S. B.
Feinstein
, “
Ultrasound-mediated targeted drug delivery: Recent success and remaining challenges
,”
Am. J. Physiol. Heart Circ. Physiol.
304
,
H350
H357
(
2013
).
7.
N. A.
Hosny
,
G.
Mohamedi
,
P.
Rademeyer
,
J.
Owen
,
Y.
Wu
,
M.-X.
Tang
,
R. J.
Eckersley
,
E.
Stride
, and
M. K.
Kuimova
, “
Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
9225
9230
(
2013
).
8.
M.
Borden
, “
Nanostructural features on stable microbubbles
,”
Soft Matter
5
,
716
720
(
2009
).
9.
K.
Chetty
,
E.
Stride
,
C.
Sennoga
,
J.
Hajnal
, and
R.
Eckersley
, “
High-speed optical observations and simulation results of SonoVue microbubbles at low-pressure insonation
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
55
,
1333
1342
(
2008
).
10.
X.
Chen
,
J.
Wang
,
M.
Versluis
,
N.
De Jong
, and
F. S.
Villanueva
, “
Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects
,”
Rev. Sci. Instrum.
84
,
063701
(
2013
).
11.
C. T.
Chin
,
C.
Lancée
,
J.
Borsboom
,
F.
Mastik
,
M. E.
Frijlink
,
N.
De Jong
,
M.
Versluis
, and
D.
Lohse
, “
Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames
,”
Rev. Sci. Instrum.
74
,
5026
5034
(
2003
).
12.
E. C.
Gelderblom
,
H. J.
Vos
,
F.
Mastik
,
T.
Faez
,
Y.
Luan
,
T. J. A.
Kokhuis
,
A. F. W.
Van Der Steen
,
D.
Lohse
,
N.
De Jong
, and
M.
Versluis
, “
Brandaris 128 ultra-high-speed imaging facility: 10 years of operation, updates, and enhanced features
,”
Rev. Sci. Instrum.
83
,
103706
(
2012
).
13.
J.
Sijl
,
H. J.
Vos
,
T.
Rozendal
,
N.
De Jong
,
D.
Lohse
, and
M.
Versluis
, “
Combined optical and acoustical detection of single microbubble dynamics
,”
J. Acoust. Soc. Am.
130
,
3271
3281
(
2011
).
14.
S. M.
van der Meer
,
B.
Dollet
,
M. M.
Voormolen
,
C. T.
Chin
,
A.
Bouakaz
,
N. de
Jong
,
M.
Versluis
, and
D.
Lohse
, “
Microbubble spectroscopy of ultrasound contrast agents
,”
J. Acoust. Soc. Am.
121
,
648
656
(
2007
).
15.
T.
Faez
,
I.
Skachkov
,
M.
Versluis
,
K.
Kooiman
, and
N. de
Jong
, “
In vivo characterization of ultrasound contrast agents: Microbubble spectroscopy in a chicken embryo
,”
Ultrasound Med. Biol.
38
,
1608
1617
(
2012
).
16.
Y.
Luan
,
T.
Faez
,
E.
Gelderblom
,
I.
Skachkov
,
B.
Geers
,
I.
Lentacker
,
T.
van der Steen
,
M.
Versluis
, and
N. de
Jong
, “
Acoustical properties of individual liposome-loaded microbubbles
,”
Ultrasound Med. Biol.
38
,
2174
2185
(
2012
).
17.
M.
Overvelde
,
V.
Garbin
,
J.
Sijl
,
B.
Dollet
,
N. de
Jong
,
D.
Lohse
, and
M.
Versluis
, “
Nonlinear shell behavior of phospholipid-coated microbubbles
,”
Ultrasound Med. Biol.
36
,
2080
2092
(
2010
).
18.
D. H.
Thomas
,
M.
Butler
,
T.
Anderson
,
M.
Emmer
,
H.
Vos
,
M.
Borden
,
E.
Stride
,
N.
De Jong
, and
V.
Sboros
, “
The quasi-stable lipid shelled microbubble in response to consecutive ultrasound pulses
,”
Appl. Phys. Lett.
101
,
071601
(
2012
).
19.
S.-L.
Huang
, “
Ultrasound-responsive liposomes
,” in
Liposomes: Methods and Protocols, Methods in Molecular Biology
, edited by
V.
Weissig
(
Humana
,
New York
,
2010
), Vol.
605
, pp.
113
128
.
20.
S.
Paul
,
R.
Nahire
,
S.
Mallik
, and
K.
Sarkar
, “
Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery
,”
Comput. Mech.
53
,
413
435
(
2014
).
21.
J. L.
Raymond
,
K. J.
Haworth
,
K. B.
Bader
,
K.
Radhakrishnan
,
J. K.
Griffin
,
S.-L.
Huang
,
D. D.
McPherson
, and
C. K.
Holland
, “
Broadband attenuation measurements of phospholipid-shelled ultrasound contrast agents
,”
Ultrasound Med. Biol.
40
,
410
421
(
2014
).
22.
K. D.
Buchanan
,
S.
Huang
,
H.
Kim
,
R. C.
MacDonald
, and
D. D.
McPherson
, “
Echogenic liposome compositions for increased retention of ultrasound reflectivity at physiologic temperature
,”
J. Pharm. Sci.
97
,
2242
2249
(
2008
).
23.
K.
Kooiman
,
T. J. A.
Kokhuis
,
T.
van Rooij
,
I.
Skachkov
,
A.
Nigg
,
J. G.
Bosch
,
A. F. W.
van der Steen
,
W. A.
van Cappellen
, and
N.
de Jong
, “
DSPC or DPPC as main shell component influences ligand distribution and binding area of lipid-coated targeted microbubbles
,”
Eur. J. Lipid Sci. Technol.
116
,
1217
1227
(
2014
).
24.
S.
Paul
,
D.
Russakow
,
R.
Nahire
,
T.
Nandy
,
A. H.
Ambre
,
K.
Katti
,
S.
Mallik
, and
K.
Sarkar
, “
In vitro measurement of attenuation and nonlinear scattering from echogenic liposomes
,”
Ultrasonics
52
,
962
969
(
2012
).
25.
J. A.
Kopechek
,
K. J.
Haworth
,
J. L.
Raymond
,
T.
Douglas Mast
,
S. R.
Perrin
, Jr.
,
M. E.
Klegerman
,
S.
Huang
,
T. M.
Porter
,
D. D.
McPherson
, and
C. K.
Holland
, “
Acoustic characterization of echogenic liposomes: Frequency-dependent attenuation and backscatter
,”
J. Acoust. Soc. Am.
130
,
3472
3481
(
2011
).
26.
R.
Nahire
,
S.
Paul
,
M. D.
Scott
,
R. K.
Singh
,
W. W.
Muhonen
,
J.
Shabb
,
K. N.
Gange
,
D. K.
Srivastava
,
K.
Sarkar
, and
S.
Mallik
, “
Ultrasound enhanced matrix metalloproteinase-9 triggered release of contents from echogenic liposomes
,”
Mol. Pharm.
9
,
2554
2564
(
2012
).
27.
A.
Katiyar
and
K.
Sarkar
, “
Excitation threshold for subharmonic generation from contrast microbubbles
,”
J. Acoust. Soc. Am.
130
,
3137
3147
(
2011
).
28.
M. A.
Ainslie
and
T. G.
Leighton
, “
Review of scattering and extinction cross-sections, damping factors, and resonance frequencies of a spherical gas bubble
,”
J. Acoust. Soc. Am.
130
,
3184
3208
(
2011
).
29.
J. L.
Leander
, “
On the eigenfrequency of a gas bubble in a liquid
,”
J. Acoust. Soc. Am.
102
,
1900
1903
(
1997
).
30.
A.
Agneni
and
L.
Balis-Crema
, “
Damping measurements from truncated signals via Hilbert transform
,”
Mech. Syst. Signal Process.
3
,
1
13
(
1989
).
31.
D.
Chatterjee
and
K.
Sarkar
, “
A Newtonian rheological model for the interface of microbubble contrast agents
,”
Ultrasound Med. Biol.
29
,
1749
1757
(
2003
).
32.
P.
Marmottant
,
S.
Van Der Meer
,
M.
Emmer
,
M.
Versluis
,
N.
De Jong
,
S.
Hilgenfeldt
, and
D.
Lohse
, “
A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture
,”
J. Acoust. Soc. Am.
118
,
3499
3505
(
2005
).
33.
L.
Hoff
,
P. C.
Sontum
, and
J. M.
Hovem
, “
Oscillations of polymeric microbubbles: Effect of the encapsulating shell
,”
J. Acoust. Soc. Am.
107
,
2272
2280
(
2000
).
34.
L. A.
Crum
, “
Polytropic exponent of a gas contained within air bubbles pulsating in a liquid
,”
J. Acoust. Soc. Am.
73
,
116
120
(
1983
).
35.
J. J.
Kwan
and
M. A.
Borden
, “
Lipid monolayer collapse and microbubble stability
,”
Adv. Colloid Interface Sci.
183–184
,
82
99
(
2012
).
36.
K. E.
Morgan
,
J. S.
Allen
,
P.
Dayton
,
J. E.
Chomas
,
A. L.
Klibanov
, and
K. W.
Ferrara
, “
Experimental and theoretical evaluation of microbubble behavior: Effect of transmitted phase and bubble size
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47
,
1494
1509
(
2000
).
37.
J.
Tu
,
J. E.
Swalwell
,
D.
Giraud
,
W.
Cui
,
W.
Chen
, and
T. J.
Matula
, “
Microbubble sizing and shell characterization using flow cytometry
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
955
963
(
2011
).
38.
J.-M.
Gorce
,
M.
Arditi
, and
M.
Schneider
, “
Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: A study of SonoVueTM
,”
Invest. Radiol.
35
,
661
671
(
2000
).
39.
K.
Sarkar
,
W. T.
Shi
,
D.
Chatterjee
, and
F.
Forsberg
, “
Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation
,”
J. Acoust. Soc. Am.
118
,
539
550
(
2005
).
40.
T.
Faez
,
D.
Goertz
, and
N.
De Jong
, “
Characterization of DefinityTM ultrasound contrast agent at frequency range of 5-15 MHz
,”
Ultrasound Med. Biol.
37
,
338
342
(
2011
).
41.
A. I.
Malkin
,
Rheology Fundamentals
(
ChemTec, Toronto-Scarborough
,
Ontario, Canada
,
1994
).
42.
C. C.
Church
, “
The effects of an elastic solid surface layer on the radial pulsations of gas bubbles
,”
J. Acoust. Soc. Am.
97
,
1510
1521
(
1995
).
43.
Q.
Li
,
T. J.
Matula
,
J.
Tu
,
X.
Guo
, and
D.
Zhang
, “
Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity
,”
Phys. Med. Biol.
58
,
985
998
(
2013
).
44.
A. A.
Doinikov
,
J. F.
Haac
, and
P. A.
Dayton
, “
Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles
,”
Ultrasonics
49
,
269
275
(
2009
).
45.
B. L.
Helfield
,
E.
Cherin
,
F. S.
Foster
, and
D. E.
Goertz
, “
Investigating the subharmonic response of individual phospholipid encapsulated microbubbles at high frequencies: A comparative study of five agents
,”
Ultrasound Med. Biol.
38
,
846
863
(
2012
).
46.
D. E.
Goertz
,
N. de
Jong
, and
A. F.
van der Steen
, “
Attenuation and size distribution measurements of Definity and manipulated Definity populations
,”
Ultrasound Med. Biol.
33
,
1376
1388
(
2007
).
47.
B. L.
Helfield
,
B. Y. C.
Leung
,
X.
Huo
, and
D. E.
Goertz
, “
Scaling of the viscoelastic shell properties of phospholipid encapsulated microbubbles with ultrasound frequency
,”
Ultrasonics
54
,
1419
1424
(
2014
).
48.
V.
Garbin
,
D.
Cojoc
,
E.
Ferrari
,
E.
Di Fabrizio
,
M. L. J.
Overvelde
,
S. M.
Van Der Meer
,
N.
De Jong
,
D.
Lohse
, and
M.
Versluis
, “
Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging
,”
Appl. Phys. Lett.
90
,
114103
(
2007
).
49.
B. L.
Helfield
,
B. Y. C.
Leung
, and
D. E.
Goertz
, “
The effect of boundary proximity on the response of individual ultrasound contrast agent microbubbles
,”
Phys. Med. Biol.
59
,
1721
1745
(
2014
).
You do not currently have access to this content.