An approach for the prediction of underwater noise caused by impact pile driving is described and validated based on in situ measurements. The model is divided into three sub-models. The first sub-model, based on the finite element method, is used to describe the vibration of the pile and the resulting acoustic radiation into the surrounding water and soil column. The mechanical excitation of the pile by the piling hammer is estimated by the second sub-model using an analytical approach which takes the large vertical dimension of the ram into account. The third sub-model is based on the split-step Padé solution of the parabolic equation and targets the long-range propagation up to 20 km. In order to presume realistic environmental properties for the validation, a geoacoustic model is derived from spatially averaged geological information about the investigation area. Although it can be concluded from the validation that the model and the underlying assumptions are appropriate, there are some deviations between modeled and measured results. Possible explanations for the observed errors are discussed.

1.
J.
Rustemeier
,
M.
Neuber
,
T.
Grießmann
,
A.
Ewaldt
,
A.
Uhl
,
M.
Schultz-von Glahn
,
K.
Betke
,
R.
Matuschek
, and
A.
Lübben
, “
Konzeption, Erprobung, Realisierung und Überprüfung von lärmarmen Bauverfahren und Schallminderungsmaßnahmen bei der Gründung von Offshore-WEA” (“Design, testing and realization of low-noise construction procedures at pile driving for offshore wind energy converters,”)
technical report, Grant No. 0327645, Hannover, Germany (
2012
), available at http://edok01.tib.uni-hannover.de/edoks/e01fb13/742098087.pdf (Last viewed April 2, 2014).
2.
P. G.
Reinhall
and
P. H.
Dahl
, “
Underwater mach wave radiation from impact pile driving: Theory and observation
,”
J. Acoust. Soc. Am.
130
,
1209
1216
(
2011
).
3.
M.
Zampolli
,
M. J. J.
Nijhof
,
C. A. F. d.
Jong
,
M. A.
Ainslie
,
E. H. W.
Jansen
, and
B. A. J.
Quesson
, “
Validation of finite element computations for the quantitative prediction of underwater noise from impact pile driving
,”
J. Acoust. Soc. Am.
133
,
72
81
(
2013
).
4.
B. M.
Goldsberry
and
M. J.
Isakson
, “
Modeling acoustic interface wave dispersion using COMSOL
,” in
Proceedings of the 2013 COMSOL Conference
,
Boston
(
2013
).
5.
A. J.
Deeks
and
M. F.
Randolph
, “
Analytical modelling of hammer impact for pile driving
,”
Int. J. Numer. Anal. Methods Geomech.
17
,
279
302
(
1993
).
6.
F.
Oberhetttinger
and
L.
Badii
,
Tables of Laplace Transforms
(
Springer
,
Berlin
,
1973
), pp.
120
125
.
7.
M. D.
Collins
, “
A split-step Padé solution for the parabolic equation method
,”
J. Acoust. Soc. Am.
93
,
1736
1742
(
1993
).
8.
M. D.
Collins
, “
Higher-order Padé approximations for accurate and stable elastic parabolic equations with application to interface wave propagation
,”
J. Acoust. Soc. Am.
89
,
1050
1057
(
1991
).
9.
M.
Ainslie
,
Principles of Sonar Performance Modelling
(
Springer
,
Berlin
,
2010
), pp.
362
389
.
10.
W. M.
Sanders
and
M. D.
Collins
, “
Nonuniform depth grids in parabolic equation solutions
,”
J. Acoust. Soc. Am.
133
,
1953
1958
(
2013
).
11.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
(
Springer
,
Berlin
,
2011
), pp.
341
347
.
12.
A.
Stokes
,
K.
Cockrell
,
J.
Wilson
,
D.
Davis
, and
D.
Warwick
, “
Mitigation of underwater pile driving noise during offshore construction
,”
Applied Physical Sciences technical report
, Groton, CT (
2010
).
13.
M.
Naumann
,
C.
Schnabel
,
J.
Fritz
, and
D.
Djuren
, “
Geopotenzial Deutsche Nordsee (GPDN)—Modul B: Erstellung von Baugrundschnitten in der Deutschen Nordsee
” (“Geological potential German North Sea—Module B: Preparation of soil profiles”), technical report, Hannover, Germany (
2013
), available at http://www.gpdn.de/iwilma.ashx?request=getMedia&ts=635187365082770000&mediaId=765 (Last viewed April 2, 2014).
14.
E. L.
Hamilton
, “
Geoacoustic modeling of the sea floor
,”
J. Acoust. Soc. Am.
68
,
1313
1340
(
1980
).
15.
Y. A.
Hegazy
and
P. W.
Mayne
, “
Statistical correlations between Vs and cone penetration data for different soil types
,” in
Proceedings of the International Symposium on Cone Penetration Testing
,
Linköping
,
Sweden
(
1995
), pp.
173
178
.
16.
T.
Lunne
,
P. K.
Robertson
, and
J. J. M.
Powell
,
Cone Penetration Testing in Geotechnical Practice
(
Blackie Academic & Professional
,
Glasgow
,
1997
).
17.
P. W.
Mayne
,
J.
Peuchen
, and
D.
Bouwmeester
, “
Soil unit weight estimated from CPTu in offshore soils
,”
Front. Offshore Geotech.
2
,
371
376
(
2010
).
18.
IOC, IHO, and BODC
, “
Centenary edition of the GEBCO digital atlas, published on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the general bathymetric chart of the oceans
,” British oceanographic Data Centre, Liverpool, UK (
2003
).
19.
M.
Bellmann
,
S.
Gündert
, and
P.
Remmers
, “
Offshore Messkampagne 1 für das Projekt BORA im Windpark BARD Offshore 1
” (“Offshore measurement campaign 1 within the project BORA”), technical report, Grant No. 0 325421A, Oldenburg, Germany (
2013
), available at http://www.bora.mub.tuhh.de/media/itapMK1.pdf (Last viewed April 2, 2014).
20.
H.
Pehlke
,
G.
Nehls
,
M.
Bellmann
,
P.
Gerke
,
A.
Diederichs
,
J.
Oldeland
,
C.
Grunau
,
S.
Witte
, and
A.
Rose
, “
Entwicklung und Erprobung des großen Blasenschleiers zur Minderung der Hydroschallemissionen bei Offshore-Rammarbeiten
” (“Development and testing of the big bubble curtain for piling noise mitigation”), technical report, Hydroschall-Off BW II, Grant No. 0 325 309A/B/C, Husum, Germany (
2013
), available at http://www.bioconsult-sh.de/pdf/BWIINDVERSION0130624inal-1.pdf (Last viewed April 2, 2014).
You do not currently have access to this content.