Determining the mechanisms of self-sustained oscillation of the vocal folds requires characterization of the pressures produced by intraglottal aerodynamics. Because most of the intraglottal aerodynamic forces cannot be measured in a tissue model of the larynx, current understanding of vocal fold vibration mechanism is derived from mechanical, analytical, and computational models. Previous studies have computed intraglottal pressures from measured intraglottal velocity fields and intraglottal geometry; however, this technique for determining pressures is not yet validated. In this study, intraglottal pressure measurements taken in a hemilarynx model are compared with pressure values that are computed from simultaneous velocity measurements. The results showed that significant negative pressure formed near the superior aspect of the folds during closing, which agrees with previous measurements in other hemilarynx models. Intraglottal velocity measurements show that the flow near the superior aspect separates from the glottal wall during closing and may develop into a vortex, which further augments the magnitude of negative pressure. Intraglottal pressure distributions, computed by solving the pressure Poisson equation, showed good agreement with pressure measurements. The match between the pressure computations and its measurements validates the current technique, which was previously used to estimate intraglottal pressure distribution in a full larynx model.

1.
Adrian
,
R.
,
Christensen
,
K.
, and
Liu
,
Z. C.
(
2000
). “
Analysis and interpretation of instantaneous turbulent velocity fields
,”
Exp. Fluids
29
,
275
290
.
2.
Alipour
,
F.
, and
Scherer
,
R. C.
(
2000
). “
Dynamic glottal pressures in an excised hemilarynx model
,”
J. Voice
14
,
443
454
.
3.
Alipour
,
F.
,
Scherer
,
R.
, and
Knowles
,
J.
(
1996
). “
Velocity distributions in glottal models
,”
J. Voice
10
,
50
58
.
4.
Berry
,
D. A.
,
Montequin
,
D. W.
, and
Tayama
,
N.
(
2001
). “
High-speed digital imaging of the medial surface of the vocal folds
,”
J. Acoust. Soc. Am.
110
,
2539
2547
.
5.
Charonko
,
J. J.
,
King
,
C. V.
,
Smith
,
B. L.
, and
Vlachos
,
P. P.
(
2010
). “
Assessment of pressure field calculations from particle image velocimetry measurements
,”
Meas. Sci. Technol.
21
,
105401
.
6.
Crowe
,
C.
,
Chung
,
J.
, and
Troutt
,
T.
(
1988
). “
Particle mixing in free shear flows
,”
Prog. Energy Combust. Sci.
14
,
171
194
.
11.
de Kat
,
R.
, and
van Oudheusden
,
B.
(
2012
). “
Instantaneous planar pressure determination from PIV in turbulent flow
,”
Exp. Fluids
52
,
1089
1106
.
7.
Döllinger
,
M.
,
Berry
,
D. A.
, and
Berke
,
G. S.
(
2005
). “
Medial surface dynamics of an in vivo canine vocal fold during phonation
,”
J. Acoust. Soc. Am.
117
,
3174
3183
.
8.
Granqvist
,
S.
,
Hertegård
,
S.
,
Larsson
,
H.
, and
Sundberg
,
J.
(
2003
). “
Simultaneous analysis of vocal fold vibration and transglottal airflow: Exploring a new experimental setup
,”
J. Voice
17
,
319
330
.
9.
Ishizaka
,
K.
, and
Matsudaira
,
M.
(
1972
) “
Fluid mechanical considerations of vocal cord vibration
,”
Monograph No. 8, Speech Communication Research Laboratory, Santa Barbara
.
10.
Jiang
,
J. J.
, and
Titze
,
I. R.
(
1993
). “
A methodological study of hemilaryngeal phonation
,”
Laryngoscope
103
,
872
882
.
12.
Khosla
,
S.
,
Murugappan
,
S.
,
Lakhamraju
,
R.
, and
Gutmark
,
E.
(
2008
). “
Using particle imaging velocimetry to measure anterior-posterior velocity gradients in the excised canine larynx model
,”
Ann. Otol. Rhinol. Laryngol.
117
,
134
144
.
13.
Khosla
,
S.
,
Oren
,
L.
,
Ying
,
J.
, and
Gutmark
,
E.
(
2014
). “
Direct simultaneous measurement of intraglottal geometry and velocity fields in excised larynges
,”
Laryngoscope
124
,
S1
S13
.
14.
Krane
,
M.
,
Barry
,
M.
, and
Wei
,
T.
(
2007
). “
Unsteady behavior of flow in a scaled-up vocal folds model
,”
J. Acoust. Soc. Am.
122
,
3659
3670
.
15.
Krane
,
M. H.
,
Barry
,
M.
, and
Wei
,
T.
(
2010
). “
Dynamics of temporal variations in phonatory flow
,”
J. Acoust. Soc. Am.
128
,
372
383
.
16.
Kucinschi
,
B. R.
,
Scherer
,
R. C.
,
DeWitt
,
K. J.
, and
Ng
,
T. T. M.
(
2006
). “
Flow visualization and acoustic consequences of the air moving through a static model of the human larynx
,”
J. Biomech. Eng.
128
,
380
390
.
17.
Mihaescu
,
M.
,
Khosla
,
S.
,
Murugappan
,
S.
, and
Gutmark
,
E.
(
2010
). “
Unsteady laryngeal airflow simulations of the intra-glottal vortical structures
,”
J. Acoust. Soc. Am.
127
,
435
444
.
18.
Mittal
,
R.
,
Earth
,
B. D.
, and
Plesniak
,
M. W.
(
2013
). “
Fluid dynamics of human phonation and speech
,”
Ann. Rev. Fluid Mech.
45
,
437
467
.
19.
Mongeau
,
L.
,
Franchek
,
N.
,
Coker
,
C. H.
, and
Kubli
,
R. A.
(
1997
). “
Characteristics of a pulsating jet through a small modulated orifice, with application to voice production
,”
J. Acoust. Soc. Am.
102
,
1121
1133
.
20.
Oren
,
L.
,
Dembinski
,
D.
,
Gutmark
,
E.
, and
Khosla
,
S.
(
2014a
). “
Characterization of the vocal fold vertical stiffness in a canine model
,”
J. Voice
28
,
297
304
.
21.
Oren
,
L.
,
Khosla
,
S.
, and
Gutmark
,
E.
(
2014b
). “
Intraglottal pressure distribution computed from empirical velocity data in canine larynx
,”
J. Biomech.
47
,
1287
1293
.
22.
Oren
,
L.
,
Khosla
,
S.
, and
Gutmark
,
E.
(
2014c
). “
Intraglottal geometry and velocity measurements in canine larynges
,”
J. Acoust. Soc. Am.
135
,
380
388
.
23.
Oren
,
L.
,
Khosla
,
S.
,
Murugappan
,
S.
,
King
,
R.
, and
Gutmark
,
E.
(
2009
). “
Role of subglottal shape in turbulence reduction
,”
Ann. Otol. Rhinol. Laryngol.
118
,
232
240
.
24.
Pelorson
,
X.
,
Hirschberg
,
A.
,
Van Hassel
,
R.
,
Wijnands
,
A.
, and
Auregan
,
Y.
(
1994
). “
Theoretical and experimental study of quasisteady-flow separation within the glottis during phonation. Application to a modified two-mass model
,”
J. Acoust. Soc. Am.
96
,
3416
3431
.
25.
Scherer
,
R. C.
,
Torkaman
,
S.
,
Kucinschi
,
B. R.
, and
Afjeh
,
A. A.
(
2010
). “
Intraglottal pressures in a three-dimensional model with a non-rectangular glottal shape
,”
J. Acoust. Soc. Am.
128
,
828
838
.
26.
Stevens
,
K. N.
(
1998
).
Acoustic Phonetics
(
MIT Press
,
Cambridge, MA
), pp.
1
202
.
27.
Story
,
B. H.
, and
Titze
,
I. R.
(
1995
). “
Voice simulation with a body-cover model of the vocal folds
,”
J. Acoust. Soc. Am.
97
,
1249
1260
.
28.
Titze
,
I. R.
(
1988
). “
The physics of small-amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
,
1536
1552
.
29.
Triep
,
M.
,
Brücker
,
C.
, and
Schröder
,
W.
(
2005
). “
High-speed PIV measurements of the flow downstream of a dynamic mechanical model of the human vocal folds
,”
Exp. Fluids
39
,
232
245
.
30.
Zhang
,
Z.
,
Mongeau
,
L.
, and
Frankel
,
S. H.
(
2002
). “
Experimental verification of the quasi-steady approximation for aerodynamic sound generation by pulsating jets in tubes
,”
J. Acoust. Soc. Am.
112
,
1652
1663
.
You do not currently have access to this content.