The seabed reflection loss (shortly “bottom loss”) is an important quantity for predicting transmission loss in the ocean. A recent passive technique for estimating the bottom loss as a function of frequency and grazing angle exploits marine ambient noise (originating at the surface from breaking waves, wind, and rain) as an acoustic source. Conventional beamforming of the noise field at a vertical line array of hydrophones is a fundamental step in this technique, and the beamformer resolution in grazing angle affects the quality of the estimated bottom loss. Implementation of this technique with short arrays can be hindered by their inherently poor angular resolution. This paper presents a derivation of the bottom reflection coefficient from the ambient-noise spatial coherence function, and a technique based on this derivation for obtaining higher angular resolution bottom-loss estimates. The technique, which exploits the (approximate) spatial stationarity of the ambient-noise spatial coherence function, is demonstrated on both simulated and experimental data.

1.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
, “
Fundamentals of ocean acoustics
,” in
Computational Ocean Acoustics (Modern Acoustics and Signal Processing
), 2nd ed. (
Springer
,
New York
,
2011
), Chap. 1, pp.
38
50
.
2.
R.
Hamson
, “
The modelling of ambient noise due to shipping and wind sources in complex environments
,”
Appl. Acoust.
51
,
251
287
(
1997
).
3.
E. L.
Hamilton
, “
Geoacoustic modeling of the sea floor
,”
J. Acoust. Soc. Am.
68
,
1313
1340
(
1980
).
4.
E. L.
Hamilton
and
R. T.
Bachman
, “
Sound velocity and related properties of marine sediments
,”
J. Acoust. Soc. Am.
72
,
1891
1904
(
1982
).
5.
C. H.
Harrison
and
D. G.
Simons
, “
Geoacoustic inversion of ambient noise: A simple method
,”
J. Acoust. Soc. Am.
112
,
1377
1389
(
2002
).
6.
C. H.
Harrison
, “
Sub-bottom profiling using ocean ambient noise
,”
J. Acoust. Soc. Am.
115
,
1505
1515
(
2004
).
7.
J. I.
Arvelo
, “
Robustness and constraints of ambient noise inversion
,”
J. Acoust. Soc. Am.
123
,
679
686
(
2008
).
8.
M.
Siderius
and
C.
Harrison
, “
High-frequency geoacoustic inversion of ambient noise data using short arrays
,”
AIP Conf. Proc.
728
,
22
31
(
2004
).
9.
J. E.
Quijano
,
S. E.
Dosso
,
J.
Dettmer
,
L. M.
Zurk
,
M.
Siderius
, and
C. H.
Harrison
, “
Bayesian geoacoustic inversion using wind-driven ambient noise
,”
J. Acoust. Soc. Am.
131
,
2658
2667
(
2012
).
10.
M.
Siderius
,
L.
Muzi
,
C. H.
Harrison
, and
P.
Nielsen
, “
Synthetic array processing of ocean ambient noise for higher resolution seabed bottom loss estimation
,”
J. Acoust. Soc. Am.
133
,
EL149
EL155
(
2013
).
11.
C. H.
Harrison
, “
Performance and limitations of spectral factorization for ambient noise sub-bottom profiling
,”
J. Acoust. Soc. Am.
118
,
2913
2923
(
2005
).
12.
C. H.
Harrison
and
M.
Siderius
, “
Bottom profiling by correlating beam-steered noise sequences
,”
J. Acoust. Soc. Am.
123
,
1282
1296
(
2008
).
13.
M.
Siderius
,
C. H.
Harrison
, and
M. B.
Porter
, “
A passive fathometer technique for imaging seabed layering using ambient noise
,”
J. Acoust. Soc. Am.
120
,
1315
1323
(
2006
).
14.
P.
Gerstoft
,
W. S.
Hodgkiss
,
M.
Siderius
,
C.-F.
Huang
, and
C. H.
Harrison
, “
Passive fathometer processing
,”
J. Acoust. Soc. Am.
123
,
1297
1305
(
2008
).
15.
S. L.
Means
and
M.
Siderius
, “
Effects of sea-surface conditions on passive fathometry and bottom characterization
,”
J. Acoust. Soc. Am.
126
,
2234
2241
(
2009
).
16.
M.
Siderius
,
H.
Song
,
P.
Gerstoft
,
W. S.
Hodgkiss
,
P.
Hursky
, and
C.
Harrison
, “
Adaptive passive fathometer processing
,”
J. Acoust. Soc. Am.
127
,
2193
2200
(
2010
).
17.
J.
Traer
,
P.
Gerstoft
, and
W. S.
Hodgkiss
, “
Ocean bottom profiling with ambient noise: A model for the passive fathometer
,”
J. Acoust. Soc. Am.
129
,
1825
1836
(
2011
).
18.
D. H.
Johnson
and
D. E.
Dudgeon
, “
Arrays and apertures
,” in
Array Signal Processing Concepts and Techniques
(
Prentice-Hall
,
Upper Saddle River, NJ
,
1993
), Chap. 3, pp.
65
, 89.
19.
C. H.
Harrison
, “
Formulas for ambient noise level and coherence
,”
J. Acoust. Soc. Am.
99
,
2055
2066
(
1996
).
20.
C. H.
Harrison
, “
Noise directionality for surface sources in range-dependent environments
,”
J. Acoust. Soc. Am.
102
,
2655
2662
(
1997
).
21.
H.
Schmidt
,
OASES Version 3.1 User Guide and Reference Manual
(
Massachusetts Institute of Technology
,
Cambridge, MA
,
2004
).
22.
W. S.
Liggett
and
M. J.
Jacobson
, “
Noise covariance and vertical directivity in a deep ocean
,”
J. Acoust. Soc. Am.
39
,
280
288
(
1966
).
23.
D. R.
Barclay
and
M. J.
Buckingham
, “
Depth dependence of wind-driven, broadband ambient noise in the Philippine Sea
,”
J. Acoust. Soc. Am.
133
62
71
(
2013
).
24.
M. J.
Buckingham
, “
A theoretical model of ambient noise in a low-loss, shallow water channel
,”
J. Acoust. Soc. Am.
67
,
1186
1192
(
1980
).
25.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
, “
Normal modes
,” in
Computational Ocean Acoustics (Modern Acoustics and Signal Processing
), 2nd ed. (
Springer
,
New York
,
2011
), Chap. 5, p.
340
.
26.
B. F.
Cron
and
C. H.
Sherman
, “
Spatial-correlation functions for various noise models
,”
J. Acoust. Soc. Am.
34
,
1732
1736
(
1962
).
27.
B. F.
Cron
, “
Addendum: Spatial-correlation functions for various noise models
,”
J. Acoust. Soc. Am.
38
,
885
(
1965
).
28.
H.
Cox
, “
Spatial correlation in arbitrary noise fields with application to ambient sea noise
,”
J. Acoust. Soc. Am.
54
,
1289
1301
(
1973
).
You do not currently have access to this content.