The backscattering spectrum versus azimuthal angle, also called the “acoustic color” or “acoustic template,” of solid cylinders located in the free water column have been previously studied. For cylinders lying proud on horizontal sand sediment, there has been progress in understanding the backscattering spectrum as a function of grazing angle and the viewing angle relative to the cylinder's axis. Significant changes in the proud backscattering spectrum versus the freefield case are associated with the interference of several multipaths involving the target and the surface. If the cylinder's axis has a vertical tilt such that one end is partially buried in the sand, the multipath structure is changed, thus modifying the resulting spectrum. Some of the changes in the template can be approximately modeled using a combination of geometrical and physical acoustics. The resulting analysis gives a simple approximation relating certain changes in the template with the vertical tilt of the cylinder. This includes a splitting in the azimuthal angle at which broadside multipath features are observed. A similar approximation also applies to a metallic cylinder adjacent to a flat free surface and was confirmed in tank experiments.

1.
K. L.
Williams
,
S. G.
Kargl
,
E. I.
Thorsos
,
D. S.
Burnett
,
J. L.
Lopes
,
M.
Zampolli
, and
P. L.
Marston
, “
Acoustic scattering from a solid aluminum cylinder in contact with a sand sediment: Measurements, modeling, and interpretation
,”
J. Acoust. Soc. Am.
127
,
3356
3371
(
2010
).
2.
J. R.
LaFollett
,
K. L.
Williams
, and
P. L.
Marston
, “
Boundary effects on backscattering by a solid aluminum cylinder: Experiment and finite element model comparisons (L)
,”
J. Acoust. Soc. Am.
130
,
669
672
(
2011
).
3.
R.
Lim
,
K. L.
Williams
, and
E. I.
Thorsos
, “
Acoustic scattering by a three-dimensional elastic object near a rough surface
,”
J. Acoust. Soc. Am.
107
,
1246
1262
(
2000
).
4.
J. L.
Kennedy
,
T. M.
Marston
,
K.
Lee
,
J. L.
Lopes
, and
R.
Lim
, “
A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: Design/operation/preliminary results
,”
Rev. Sci. Instrum.
85
,
014901
(
2014
).
5.
P. L.
Marston
, “
Approximate meridional leaky ray amplitudes for tilted cylinders: End-backscattering enhancements and comparisons with exact theory for infinite solid cylinders
,”
J. Acoust. Soc. Am.
102
,
358
369
(
1997
).
6.
K.
Gipson
and
P. L.
Marston
, “
Backscattering enhancements due to reflection of meridional leaky Rayleigh waves at the blunt truncation of a tilted solid cylinder in water: Observations and theory
,”
J. Acoust. Soc. Am.
106
,
1673
1680
(
1999
).
7.
K.
Gipson
and
P. L.
Marston
, “
Backscattering enhancements from Rayleigh waves on the flat face of a tilted solid cylinder in water
,”
J. Acoust. Soc. Am.
107
,
112
117
(
2000
).
8.
T. K.
Stanton
, “
Sound scattering by cylinders of finite length. II. elastic cylinders
,”
J. Acoust. Soc. Am.
83
,
64
67
(
1988
).
9.
X.-L.
Bao
, “
Echoes and helical surface waves on a finite elastic cylinder excited by sound pulses in water
,”
J. Acoust. Soc. Am.
94
,
1461
1466
(
1993
).
10.
G. C.
Gaunaurd
and
H.
Huang
, “
Acoustic scattering by a spherical body near a plane boundary
,”
J. Acoust. Soc. Am.
96
,
2526
2536
(
1994
).
11.
M.
Zampolli
,
A.
Tesei
,
F. B.
Jensen
,
N.
Malm
, and
J. B.
Blottman
, “
A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects
,”
J. Acoust. Soc. Am.
122
,
1472
1485
(
2007
).
12.
M.
Zampolli
,
A. L.
España
,
K. L.
Williams
,
S. G.
Kargl
,
E. I.
Thorsos
,
J. L.
Lopes
,
J. L.
Kennedy
, and
P. L.
Marston
, “
Low- to mid-frequency scattering from elastic objects on a sand sea floor: Simulation of frequency and aspect angle dependant structural echoes
,”
J. Comp. Acoust.
20
,
1240007
(
2012
).
13.
M.
Nijhof
,
A. L.
España
, and
K. L.
Williams
, “
Efficient calculation of broadband acoustic scattering from a partially, obliquely buried cylinder
,” in
Proceedings of the 1st International Conference Exhibition Underwater Acoustics
(
2013
), pp.
697
702
.
14.
L. R.
Dragonette
,
S. K.
Numrich
, and
L. J.
Frank
, “
Calibration technique for acoustic scattering measurements
,”
J. Acoust. Soc. Am.
69
,
1186
1189
(
1981
).
15.
A. L.
Fetter
and
J. D.
Walecka
,
Theoretical Mechanics of Particles and Continua
(
Dover
,
Mineola, NY
,
2003
), pp.
158
161
.
16.
J. D.
Pendleton
, “
Euler angle geometry, helicity basis vectors, and the Wigner D-function addition theorem
,”
Am. J. Phys.
71
,
1280
1291
(
2003
).
17.
P. L.
Marston
, “
Geometrical and catastrophe optics methods in scattering
,”
Phys. Acoust.
21
,
1
234
(
1992
).
18.
G. C.
Gaunaurd
, “
Sonar cross sections of bodies partially insonified by finite sound beams
,”
IEEE J. Oceanic Eng.
10
,
213
230
(
1985
).
19.
N. H.
Sun
and
P. L.
Marston
, “
Ray synthesis of leaky Lamb wave contributions to backscattering from thick cylindrical shells
,”
J. Acoust. Soc. Am.
91
,
1398
1402
(
1992
).
20.
P. L.
Marston
, “
Leaky waves on weakly curved scatterers. II. Convolution formulation for two-dimensional high-frequency scattering
,”
J. Acoust. Soc. Am.
97
,
34
41
(
1995
).
21.
R. D.
Doolittle
,
H.
Überall
, and
P.
Uginîcius
, “
Sound scattering by elastic cylinders
,”
J. Acoust. Soc. Am.
43
,
1
14
(
1968
).
22.
F. J.
Blonigen
and
P. L.
Marston
, “
Leaky helical flexural wave backscattering contributions from tilted cylindrical shells in water: Observations and modeling
,”
J. Acoust. Soc. Am.
112
,
528
536
(
2002
).
23.
K. L.
Williams
and
P. L.
Marston
, “
Mixed-mode acoustical glory scattering from a large elastic sphere: Model and experimental verification
,”
J. Acoust. Soc. Am.
76
,
1555
1563
(
1984
).
You do not currently have access to this content.