In order to work at higher ultrasonic frequencies, for instance, to increase the resolution, it is necessary to fabricate smaller and higher frequency transducers. This paper presents an ultrasonic transducer capable of being made at a very small size and operated at GHz frequencies. The transducers are activated and read optically using pulsed lasers and without physical contact between the instrumentation and the transducer. This removes some of the practical impediments of traditional piezoelectric architectures (such as wiring) and allows the devices to be placed immediately on or within samples, reducing the significant effect of attenuation which is very strong at frequencies above 1 GHz. The transducers presented in this paper exploit simultaneous optical and mechanical resonances to couple the optical input into ultrasonic waves and vice versa. This paper discusses the mechanical and optical design of the devices at a modest scale (a few μm) and explores the scaling of the transducers toward the sub-micron scale. Results are presented that show how the transducers response changes depending on its local environment and how the resonant frequency shifts when the transducer is loaded by a printed protein sample.

1.
B.
Hadimioglu
and
C. F.
Quate
, “
Water acoustic microscopy at suboptical wavelengths
,”
Appl. Phys. Lett.
43
,
1006
1007
(
1983
).
2.
J.
Heiserman
,
D.
Rugar
, and
C. F.
Quate
, “
Cryogenic acoustic microscopy
,”
J. Acoust. Soc. Am.
67
,
1629
1637
(
1980
).
3.
P. A.
Mante
,
J. F.
Robillard
, and
A.
Devos
, “
Complete thin film mechanical characterization using picosecond ultrasonics and nanostructured transducers: Experimental demonstration on SiO2
,”
Appl. Phys. Lett.
93
,
071909
(
2008
).
4.
P.
Babilotte
,
P.
Ruello
,
D.
Mounier
,
T.
Pezeril
,
G.
Vaudel
,
M.
Edely
,
J.-M.
Breteau
,
V.
Gusev
, and
K.
Blary
, “
Femtosecond laser generation and detection of high-frequency acoustic phonons in GaAs semiconductors
,”
Phys. Rev. B
81
,
245207
(
2010
).
5.
W.
Chen
,
Y.
Lu
,
H. J.
Maris
, and
G.
Xiao
, “
Picosecond ultrasonic study of localized phonon surface modes in Al/Ag superlattices
,”
Phys. Rev. B
50
,
14506
14515
(
1994
).
6.
O. B.
Wright
,
B.
Perrin
,
O.
Matsuda
, and
V. E.
Gusev
, “
Optical excitation and detection of picosecond acoustic pulses in liquid mercury
,”
Phys. Rev. B
78
,
024303
(
2008
).
7.
M.
Ducousso
,
O.
El-Farouk Zouani
,
C.
Chanseau
,
C.
Chollet
,
C.
Rossignol
,
B.
Audoin
, and
M.-C.
Durrieu
, “
Evaluation of mechanical properties of fixed bone cells with sub-micrometer thickness by picosecond ultrasonics
,”
European Phys. J. Appl. Phys.
61
,
11201
11211
(
2013
).
8.
T.
Dehoux
and
B.
Audoin
, “
Non-invasive optoacoustic probing of the density and stiffness of single biological cells
,”
J. Appl. Phys.
112
,
124702
(
2012
).
9.
T.
Dehoux
,
T. A.
Kelf
,
M.
Tomoda
,
O.
Matsuda
,
O. B.
Wright
,
K.
Ueno
,
Y.
Nishijima
,
S.
Juodkazis
,
H.
Misawa
,
V.
Tournat
, and
V. E.
Gusev
, “
Vibrations of microspheres probed with ultrashort optical pulses
,”
Opt. Lett.
34
,
3740
3742
(
2009
).
10.
D.
Segur
,
Y.
Guillet
, and
B.
Audoin
, “
Intrinsic geometric scattering probed by picosecond optoacoustics in a cylindrical cavity: Application to acoustic and optical characterizations of a single micron carbon fiber
,”
Appl. Phys. Lett.
97
,
031901
(
2010
).
11.
T. A.
Kelf
,
Y.
Tanaka
,
O.
Matsuda
,
E. M.
Larsson
,
D. S.
Sutherland
, and
O. B.
Wright
, “
Ultrafast vibrations of gold nanorings
,”
Nano Lett.
11
,
3893
3898
(
2011
).
12.
J.
Aizpurua
,
G. W.
Bryant
,
L. J.
Richter
,
F. J.
Garca de Abajo
,
B. K.
Kelley
, and
T.
Mallouk
, “
Optical properties of coupled metallic nanorods for field-enhanced spectroscopy
,”
Phys. Rev. B
71
,
235420
(
2005
).
13.
D.
Mongin
,
V.
Juve
,
P.
Maioli
,
A.
Crut
,
N.
Del Fatti
,
F.
Vallee
,
A.
Sanchez-Iglesias
,
I.
Pastoriza-Santos
, and
L. M.
Liz-Marzan
, “
Acoustic vibrations of metal-dielectric core-shell nanoparticles
,”
Nano Lett.
11
,
3016
3021
(
2011
).
14.
H.-Y.
Chiu
,
P.
Hung
,
H. W. C.
Postma
, and
M.
Bockrath
, “
Atomic-scale mass sensing using carbon nanotube resonators
,”
Nano Lett.
8
,
4342
4346
(
2008
).
15.
J. N.
Anker
,
W. P.
Hall
,
O.
Lyandres
,
N. C.
Shah
,
J.
Zhao
, and
R. P.
Van Duyne
, “
Biosensing with plasmonic nanosensors
,”
Nat. Mater.
7
,
442
453
(
2008
).
16.
A.
Campion
and
P.
Kambhampati
, “
Surface-enhanced Raman scattering
,”
Chem. Soc. Rev.
27
,
241
250
(
1998
).
17.
H.
Xu
,
J. W.
Aylott
,
R.
Kopelman
,
T. J.
Miller
, and
M. A.
Philbert
, “
A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma
,”
Anal. Chem.
73
,
4124
4133
(
2001
).
18.
P. G.
Coupland
,
S. J.
Briddon
, and
J. W.
Aylott
, “
Using fluorescent ph-sensitive nanosensors to report their intracellular location after Tat-mediated delivery
,”
Integr. Biol.
1
,
318
323
(
2009
).
19.
J. D.
Hamilton
,
T.
Buma
,
M.
Spisar
, and
M.
O'Donnell
, “
High frequency optoacoustic arrays using etalon detection
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
47
,
160
169
(
2000
).
20.
M.
Born
and
E.
Wolf
,
Principles of Optics
, 7th ed. (
Cambridge University Press
,
Cambridge
,
1999
),
367
pp.
21.
S.-W.
Huang
,
Y.
Hou
,
S.
Ashkenazi
, and
M. O.
Donnell
, “
High-resolution ultrasonic imaging using an etalon detector array
,”
Appl. Phys. Lett.
93
,
113501
(
2008
).
22.
E. Z.
Zhang
and
P. C.
Beard
, “
A miniature all-optical photoacoustic imaging probe
,” in
Photons Plus Ultrasound: Imaging and Sensing
(
SPIE
,
Bellingham, WA
,
2011
), Vol.
78991F
.
23.
Y.
Li
,
Q.
Miao
,
A.
Nurmikko
, and
H.
Maris
, “
Picosecond ultrasonic measurements using an optical cavity
,”
J. Appl. Phys.
105
,
083516
(
2009
).
24.
R.
Smith
,
A.
Arca
,
X.
Chen
,
L.
Marques
,
M.
Clark
,
J.
Aylott
, and
M.
Somekh
, “
Design and fabrication of ultrasonic transducers with nanoscale dimensions
,”
J. Phys. Conf. Ser.
278
,
012035
(
2011
).
25.
R.
Smith
,
A.
Arca
,
X.
Chen
,
L.
Marques
,
M.
Clark
,
J.
Aylott
, and
M. G.
Somekh
, “
Design and fabrication of nanoscale ultrasonic transducers
,”
J. Phys. Conf. Ser.
353
,
012001
(
2012
).
26.
P.
Morris
,
A.
Hurrell
,
A.
Shaw
,
E.
Zhang
, and
P.
Beard
, “
A Fabry–Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure
,”
J. Acoust. Soc. Am.
125
,
3611
3622
(
2009
).
27.
O.
Matsuda
,
O. B.
Wright
,
D. H.
Hurley
,
V. E.
Gusev
, and
K.
Shimizu
, “
Coherent shear phonon generation and detection with ultrashort optical pulses
,”
Phys. Rev. Lett.
93
,
095501
(
2004
).
28.
D.
Hurley
,
O.
Wright
,
O.
Matsuda
,
V.
Gusev
, and
O.
Kolosov
, “
Laser picosecond acoustics in isotropic and anisotropic materials
,”
Ultrasonics
38
,
470
474
(
2000
).
29.
O.
Matsuda
and
O. B.
Wright
, “
Reflection and transmission of light in multilayers perturbed by picosecond strain pulse propagation
,”
J. Opt. Soc. Am. B
19
,
3028
3041
(
2002
).
30.
ITO is conductive at sub-optical frequencies and can easily be DC sputtered whereas insulators such as SiO2 cannot be.
31.
M.
Frasconi
,
F.
Mazzei
, and
T.
Ferri
, “
Protein immobilization at gold-thiol surfaces and potential for biosensing
,”
Anal. Bioanal. Chem.
398
,
1545
1564
(
2010
).
32.
P.
Mendes
, “
Stimuli-responsive surfaces for bio-applications
,”
Chem. Soc. Rev.
37
,
2512
2529
(
2008
).
33.
R. D.
Averitt
,
S.
Westcott
, and
N. J.
Halas
, “
Linear optical properties of gold nanoshells
,”
J. Opt. Soc. Am. B
16
,
1824
1832
(
1999
).
34.
P. A.
Elzinga
,
F. E.
Lytle
,
Y.
Jian
,
G. B.
King
, and
N. M.
Laurendeau
, “
Pump/probe spectroscopy by asynchronous optical sampling
,”
Appl. Spectrosc.
41
,
2
4
(
1987
).
35.
A.
Bartels
,
R.
Cerna
,
C.
Kistner
,
A.
Thoma
,
F.
Hudert
,
C.
Janke
, and
T.
Dekorsy
, “
Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling
,”
Rev. Sci. Instrum.
78
,
035107
(
2007
).
36.
V. A.
Stoica
,
Y.-M.
Sheu
,
D. A.
Reis
, and
R.
Clarke
, “
Wideband detection of transient solid-state dynamics using ultrafast fiber lasers and asynchronous optical sampling
,”
Opt. Express
16
,
2322
2335
(
2008
).
You do not currently have access to this content.