Ultrasonic echoes backscattered from diffuse media, recorded by an array transducer and appropriately focused, demonstrate coherence predicted by the van Cittert–Zernike theorem. Additive noise signals from off-axis scattering, reverberation, phase aberration, and electronic (thermal) noise can all superimpose incoherent or partially coherent signals onto the recorded echoes, altering the measured coherence. An expression is derived to describe the effect of uncorrelated random channel noise in terms of the noise-to-signal ratio. Equivalent descriptions are made in the aperture dimension to describe uncorrelated magnitude and phase apodizations of the array. Binary apodization is specifically described as an example of magnitude apodization and adjustments are presented to minimize the artifacts caused by finite signal length. The effects of additive noise are explored in short-lag spatial coherence imaging, an image formation technique that integrates the calculated coherence curve of acquired signals up to a small fraction of the array length for each lateral and axial location. A derivation of the expected contrast as a function of noise-to-signal ratio is provided and validation is performed in simulation.

1.
R.
Mallart
and
M.
Fink
, “
The van Cittert–Zernike theorem in pulse echo measurements
,”
J. Acoust. Soc. Am.
90
,
2718
2727
(
1991
).
2.
D.
Liu
and
R.
Waag
, “
About the application of the van Cittert-Zernike theorem in ultrasonic imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
42
,
590
601
(
1995
).
3.
P.-C.
Li
and
M.-L.
Li
, “
Adaptive imaging using the generalized coherence factor
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
50
,
128
141
(
2003
).
4.
J.
Camacho
,
M.
Parrilla
, and
C.
Fritsch
, “
Phase coherence imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
56
,
958
974
(
2009
).
5.
M. A.
Lediju
,
G. E.
Trahey
,
B. C.
Byram
, and
J. J.
Dahl
, “
Short-lag spatial coherence of backscattered echoes: Imaging characteristics
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
1377
1388
(
2011
).
6.
R.
Mallart
and
M.
Fink
, “
Adaptive focusing in scattering media through sound-speed inhomogeneities: The van Cittert–Zernike approach and focusing
,”
J. Acoust. Soc. Am.
96
,
3721
3732
(
1994
).
7.
D.
Liu
and
R. C.
Waag
, “
Estimation and correction of ultrasonic wavefront distortion using pulse-echo data received in a two-dimensional aperture
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
45
,
473
490
(
1998
).
8.
J. C.
Lacefield
and
R. C.
Waag
, “
Spatial coherence analysis applied to aberration correction using a two-dimensional array system
,”
J. Acoust. Soc. Am.
112
,
2558
2566
(
2002
).
9.
M.
Fink
,
R.
Mallart
, and
F.
Cancre
, “
The random phase transducer: A new technique for incoherent processing-basic principles and theory
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
37
,
54
69
(
1990
).
10.
G. F.
Pinton
,
G. E.
Trahey
, and
J. J.
Dahl
, “
Sources of image degradation in fundamental and harmonic ultrasound imaging: A nonlinear, full-wave, simulation study
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
1272
1283
(
2011
).
11.
P. J.
Brands
,
A. P. G.
Hoeks
, and
R. S.
Reneman
, “
The effect of echo suppression on the mean velocity estimation range of the RF cross-correlation model estimator
,”
Ultrasound Med. Biol.
21
,
945
959
(
1995
).
12.
M. A.
Lediju
,
M. J.
Pihl
,
J. J.
Dahl
, and
G. E.
Trahey
, “
Quantitative assessment of the magnitude, impact and spatial extent of ultrasonic clutter
,”
Ultrason. Imaging
30
,
151
168
(
2008
).
13.
J. W.
Goodman
,
Statistical Optics
(
Wiley
,
New York
,
2000
), pp.
207
228
.
14.
N.
Bottenus
,
B. C.
Byram
,
J. J.
Dahl
, and
G. E.
Trahey
, “
Synthetic aperture focusing for short-lag spatial coherence imaging
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
60
,
1816
1826
(
2013
).
15.
W. F.
Walker
and
G. E.
Trahey
, “
Speckle coherence and implications for adaptive imaging
,”
J. Acoust. Soc. Am.
101
,
1847
1858
(
1997
).
16.
S. W.
Golomb
,
Shift Register Sequences
(
Aegean Park
,
Laguna Hills, CA
,
1982
), pp.
24
48
.
17.
M.
Baldi
,
F.
Chiaraluce
,
N.
Boujnah
, and
R.
Garello
, “
On the autocorrelation properties of truncated maximum-length sequences and their effect on the power spectrum
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
58
,
6284
6297
(
2010
).
18.
J. J.
Dahl
,
D.
Hyun
,
M.
Lediju
, and
G. E.
Trahey
, “
Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging
,”
Ultrason. Imaging
33
,
119
133
(
2011
).
19.
J. A.
Jensen
, “
Field: A Program for Simulating Ultrasound Systems
,”
Med. Biol. Eng. Comput.
34
,
351
354
(
1996
).
20.
J. A.
Jensen
and
N. B.
Svendsen
, “
Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers
,”
IEEE Trans. Ultrason. Ferroelec. Freq. Control
39
,
262
267
(
1992
).
21.
R. F.
Wagner
,
M. F.
Insana
, and
S. W.
Smith
, “
Fundamental correlation lengths of coherent speckle in medical ultrasonic images
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
35
,
34
44
(
1988
).
You do not currently have access to this content.