Despite the frequent observation of a persistent opening in the posterior cartilaginous glottis in normal and pathological phonation, its influence on the self-sustained oscillations of the vocal folds is not well understood. The effects of a posterior gap on the vocal fold tissue dynamics and resulting acoustics were numerically investigated using a specially designed flow solver and a reduced-order model of human phonation. The inclusion of posterior gap areas of 0.03–0.1 cm2 reduced the energy transfer from the fluid to the vocal folds by more than 42%–80% and the radiated sound pressure level by 6–14 dB, respectively. The model was used to simulate vocal hyperfucntion, i.e., patterns of vocal misuse/abuse associated with many of the most common voice disorders. In this first approximation, vocal hyperfunction was modeled by introducing a compensatory increase in lung air pressure to regain the vocal loudness level that was produced prior to introducing a large glottal gap. This resulted in a significant increase in maximum flow declination rate and amplitude of unsteady flow, thereby mimicking clinical studies. The amplitude of unsteady flow was found to be linearly correlated with collision forces, thus being an indicative measure of vocal hyperfunction.

1.
S.
Linville
, “
Glottal gap configurations in two age groups of women
,”
J. Speech Hear. Res.
35
,
1209
1215
(
1992
).
2.
E. B.
Holmberg
,
R. E.
Hillman
, and
J. S.
Perkell
, “
Comparisons among aerodynamic, electroglotto graphic, and acoustic spectral measures of female voice
,”
J. Speech Hear. Res.
38
,
1212
1223
(
1995
).
3.
H. M.
Hanson
, “
Glottal characteristics of female speakers: Acoustic correlates
,”
J. Acoust. Soc. Am.
101
,
466
481
(
1997
).
4.
B. H.
Story
and
K.
Bunton
, “
Production of child-like vowels with nonlinear interaction of glottal flow and vocal tract resonances
,”
Proc. Meet. Acoust.
19
,
060303
(
2013
).
5.
E. B.
Holmberg
,
R. E.
Hillman
, and
J. S.
Perkell
, “
Glottal air-flow and transglottal air-pressure measurements for male and female speakers in soft, normal, and loud voice
,”
J. Acoust. Soc. Am.
84
,
511
529
(
1988
).
6.
R. E.
Hillman
,
E. B.
Holmberg
,
J. S.
Perkell
,
M.
Walsh
, and
C.
Vaughan
, “
Objective assessment of vocal hyperfunction: An experimental framework and initial results
,”
J. Speech Hear. Res.
32
,
373
392
(
1989
).
7.
J. S.
Perkell
,
R. E.
Hillman
, and
E. B.
Holmberg
, “
Group differences in measures of voice production and revised values of maximum airflow declination rate
,”
J. Acoust. Soc. Am.
96
,
695
698
(
1994
).
8.
B.
Cranen
and
J.
Schroeter
, “
Modeling a leaky glottis
,”
J. Phon.
23
,
165
177
(
1995
).
9.
B.
Cranen
and
J.
Schroeter
, “
Physiologically motivated modelling of the voice source in articulatory analysis/synthesis
,”
Speech Comm.
19
,
1
19
(
1996
).
10.
M.
Rothenberg
, “
Source-tract acoustic interaction in breathy voice
,” in
Vocal Fold Physiology: Biomechanics, Acoustics and Phonatory Control
, edited by
I. R.
Titze
and
R. C.
Scherer
(
The Denver Center for the Performing Arts
,
Denver, CO
,
1984
), pp.
465
481
.
11.
B.
Cranen
and
L.
Boves
, “
On subglottal formant analysis
,”
J. Acoust. Soc. Am.
81
,
734
746
(
1987
).
12.
D. H.
Klatt
and
L. C.
Klatt
, “
Analysis, synthesis and perception of voice quality variations among male and female talkers
,”
J. Acoust. Soc. Am.
87
,
820
856
(
1990
).
13.
J. B.
Park
and
L.
Mongeau
, “
Experimental investigation of the influence of a posterior gap on glottal flow and sound
,”
J. Acoust. Soc. Am.
124
,
1171
1179
(
2008
).
14.
B. D.
Erath
,
M.
Zañartu
,
K. C.
Stewart
,
M. W.
Plesniak
,
D. E.
Sommer
, and
S. D.
Peterson
, “
A review of lumped-element numerical models of voiced speech
,”
Speech Comm.
55
,
667
690
(
2013
).
15.
X.
Pelorson
,
A.
Hirschberg
,
A. P. J.
Wijnands
, and
H. M. A.
Bailliet
, “
Theoretical and experimental study of quasisteady-flow separation within the glottis during phonation
,”
J. Acoust. Soc. Am.
96
,
3416
3431
(
1994
).
16.
R. S.
McGowan
,
L. L.
Koenig
, and
A.
Lofqvist
, “
Vocal tract aerodynamics in /aCa/ utterances: Simulations
,”
Speech Commun.
16
,
67
88
(
1995
).
17.
J. C.
Lucero
and
L. L.
Koenig
, “
Simulations of temporal patterns of oral airflow in men and woman using a two-mass model of the vocal folds under dynamic control
,”
J. Acoust. Soc. Am.
117
,
1362
1372
(
2005
).
18.
P.
Birkholz
,
B. J.
Kröger
, and
C.
Neuscheafer-Rube
, “
Synthesis of breathy, normal, and pressed phonation using a two-mass model with a triangular glottis
,” in
Proceedings of the Interspeech 2011
(
Florence, Italy
,
2011
), pp.
2681
2684
.
19.
J.
Kuo
, “
Voice source modeling and analysis of speakers with vocal-fold nodules
,” Ph.D. thesis, Division of Health Sciences and Technology, Harvard-MIT, Cambridge, MA,
1998
.
20.
J. C.
Lucero
, “
Oscillation hysteresis in a two-mass model of the vocal folds
,”
J. Sound Vib.
282
,
1247
1254
(
2005
).
21.
P.
Birkholz
,
B. J.
Kröger
, and
C.
Neuschaefer-Rube
, “
Articulatory synthesis of words in six voice qualities using a modified two-mass model of the vocal folds
,” in
First International Workshop on Performative Speech and Singing Synthesis
(
2011
), pp.
1
8
.
22.
R.
Scherer
,
B.
Frazer
, and
G.
Zhai
, “
Modeling flow through the posterior glottal gap
,”
Proc. Meet. Acoust.
19
,
060240
(
2013
).
23.
M.
Rothenberg
, “
A new inverse-filtering technique for deriving the glottal air flow wave-form during voicing
,”
J. Acoust. Soc. Am.
53
,
1632
1645
(
1973
).
24.
D. D.
Mehta
,
M.
Zañartu
,
S. W.
Feng
,
H. A.
Cheyne
, and
R. E.
Hillman
, “
Mobile voice health monitoring using a wearable accelerometer sensor and a smartphone platform
,”
IEEE Trans. Biomed. Eng.
59
,
3090
3096
(
2012
).
25.
M.
Zañartu
,
J. C.
Ho
,
D. D.
Mehta
,
R. E.
Hillman
, and
G. R.
Wodicka
, “
Subglottal impedance-based inverse filtering of speech sounds using neck surface acceleration
,”
IEEE Trans. Audio Speech Lang. Proc.
21
,
1929
1939
(
2013
).
26.
M.
Ghassemi
,
J. H.
Van Stan
,
D. D.
Mehta
,
M.
Zañartu
,
H. A.
Cheyne
,
R. E.
Hillman
, and
J. V.
Guttag
, “
Learning to detect vocal hyperfunction from ambulatory neck-surface acceleration features: Initial results for vocal fold nodules
,”
IEEE Tran. Biomed. Eng.
61
,
1668
1675
(
2014
).
27.
B. H.
Story
and
I. R.
Titze
, “
Voice simulation with a body-cover model of the vocal folds
,”
J. Acoust. Soc. Am.
97
,
1249
1260
(
1995
).
28.
K.
Ishizaka
and
M.
Matsudaira
, “
Fluid mechanical considerations of vocal fold vibration
,” in
Speech Communication Research Laboratory
, Monograph No. 8 (
Santa Barbara, CA
,
1972
), pp.
1
152
.
29.
I. R.
Titze
and
B. H.
Story
, “
Acoustic interactions of the voice source with the lower vocal tract
,”
J. Acoust. Soc. Am.
101
,
2234
2243
(
1997
).
30.
I. R.
Titze
and
A. S.
Worley
, “
Modeling source-filter interaction in belting and high-pitched operatic male singing
,”
J. Acoust. Soc. Am.
126
,
1530
1540
(
2009
).
31.
D. D.
Mehta
,
M.
Zañartu
,
T. F.
Quatieri
,
D. D.
Deliyski
, and
R. E.
Hillman
, “
Investigating acoustic correlates of human vocal fold phase asymmetry through mathematical modeling and laryngeal high-speed videoendoscopy
,”
J. Acoust. Soc. Am.
130
,
3999
4009
(
2011
).
32.
P.
Alku
,
C.
Magi
,
S.
Yrttiaho
,
T.
Bäckström
, and
B.
Story
, “
Closed phase covariance analysis based on constrained linear prediction for glottal inverse filtering
,”
J. Acoust. Soc. Am.
125
,
3289
3305
(
2009
).
33.
I. R.
Titze
, “
Regulating glottal airflow in phonation: Application of the maximum power transfer theorem to a low dimensional phonation model
,”
J. Acoust. Soc. Am.
111
,
367
376
(
2002
).
34.
I. R.
Titze
and
B. H.
Story
, “
Rules for controlling low-dimensional vocal fold models with muscle activation
,”
J. Acoust. Soc. Am.
112
,
1064
1076
(
2002
).
35.
B. H.
Story
, “
Physiologically-based speech simulation using an enhanced wave-reflection model of the vocal tract
,” Ph.D. thesis, University of Iowa, Iowa City, IA,
1995
.
36.
H.
Takemoto
,
K.
Honda
,
S.
Masaki
,
Y.
Shimada
, and
I.
Fujimoto
, “
Measurement of temporal changes in vocal tract area function from 3D cine-MRI data
,”
J. Acoust. Soc. Am.
119
,
1037
1049
(
2006
).
37.
E. R.
Weibel
,
Morphometry of the Human Lung
(
Springer
,
New York
,
1963
), pp.
136
142
.
38.
J.
Hillenbrand
,
R.
Cleveland
, and
R.
Erickson
, “
Acoustic correlates of breathy vocal quality
,”
J. Speech Hear. Res.
37
,
769
778
(
1994
).
39.
Z.
Zhang
,
L.
Mongeau
, and
S. H.
Frankel
, “
Experimental verification of the quasi-steady approximation for aerodynamic sound generation by pulsating jets in tubes
,”
J. Acoust. Soc. Am.
112
,
1652
1663
(
2002
).
40.
L.
Mongeau
,
N.
Franchek
,
C. H.
Coker
, and
R. A.
Kubli
, “
Characteristics of a pulsating jet through a small modulated orifice, with application to voice production
,”
J. Acoust. Soc. Am.
102
,
1121
1133
(
1997
).
41.
I. R.
Titze
, “
Parameterization of the glottal area, glottal flow, and vocal fold contact area
,”
J. Acoust. Soc. Am.
75
,
570
580
(
1984
).
42.
J.
Liljencrants
, “
Speech synthesis with a reflection-type line analog
,” Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden,
1985
.
43.
I. R.
Titze
, “
Nonlinear source-filter coupling in phonation: Theory
,”
J. Acoust. Soc. Am.
123
,
2733
2749
(
2008
).
44.
D. G.
Childers
and
C. K.
Lee
, “
Vocal quality factors: Analysis, synthesis, and perception
,”
J. Acoust. Soc. Am.
90
,
2394
2410
(
1991
).
45.
S. L.
Thomson
,
L.
Mongeau
, and
S.
Frankel
, “
Aerodynamic transfer of energy to the vocal folds
,”
J. Acoust. Soc. Am.
118
,
1689
1700
(
2005
).
You do not currently have access to this content.