Otoacoustic emission (OAE) tests of the medial-olivocochlear reflex (MOCR) in humans were assessed for viability as clinical assays. Two reflection-source OAEs [TEOAEs: transient-evoked otoacoustic emissions evoked by a 47 dB sound pressure level (SPL) chirp; and discrete-tone SFOAEs: stimulus-frequency otoacoustic emissions evoked by 40 dB SPL tones, and assessed with a 60 dB SPL suppressor] were compared in 27 normal-hearing adults. The MOCR elicitor was a 60 dB SPL contralateral broadband noise. An estimate of MOCR strength, MOCR%, was defined as the vector difference between OAEs measured with and without the elicitor, normalized by OAE magnitude (without elicitor). An MOCR was reliably detected in most ears. Within subjects, MOCR strength was correlated across frequency bands and across OAE type. The ratio of across-subject variability to within-subject variability ranged from 2 to 15, with wideband TEOAEs and averaged SFOAEs giving the highest ratios. MOCR strength in individual ears was reliably classified into low, normal, and high groups. SFOAEs using 1.5 to 2 kHz tones and TEOAEs in the 0.5 to 2.5 kHz band gave the best statistical results. TEOAEs had more clinical advantages. Both assays could be made faster for clinical applications, such as screening for individual susceptibility to acoustic trauma in a hearing-conservation program.

1.
Abdala
,
C.
,
Mishra
,
S.
, and
Garinis
,
A.
(
2013
). “
Maturation of the human medial efferent reflex revisited
,”
J. Acoust. Soc. Am.
133
,
938
950
.
2.
Abdala
,
C.
,
Mishra
,
S. K.
, and
Williams
,
T. L.
(
2009
). “
Considering distortion product otoacoustic emission fine structure in measurements of the medial olivocochlear reflex
,”
J. Acoust. Soc. Am.
125
,
1584
1594
.
3.
Andeol
,
G.
,
Guillaume
,
A.
,
Micheyl
,
C.
,
Savel
,
S.
,
Pellieux
,
L.
, and
Moulin
,
A.
(
2011
). “
Auditory efferents facilitate sound localization in noise in humans
,”
J. Neurosci.
31
,
6759
6763
.
4.
ANSI
(
2004
). S3.21,
Methods for Manual Pure-Tone Threshold Audiometry
(
American National Standards Institute
,
New York
).
5.
Backus
,
B. C.
, and
Guinan
,
J. J.
(
2007
). “
Measurement of the distribution of medial olivocochlear acoustic reflex strengths across normal-hearing individuals via otoacoustic emissions
,”
J. Assoc. Res. Otolaryngol.
8
,
484
496
.
6.
Bamber
,
D.
(
1975
). “
The area above the ordinal dominance graph and the area below the receiver operating characteristic graph
,”
J. Math. Psychol.
12
,
387
415
.
7.
Bray
,
P. J.
(
1989
). “
Click evoked otoacoustic emissions and the development of a clinical otoacoustic hearing test instrument
,” Ph.D. thesis,
Institute of Laryngology and Otology, University College and Middlesex School of Medicine
,
London
.
8.
Froehlich
,
P.
,
Collet
,
L.
,
Valatx
,
J. L.
, and
Morgon
,
A.
(
1993
). “
Sleep and active cochlear micromechanical properties in human subjects
,”
Hear. Res.
66
,
1
7
.
9.
Ghiselli
,
E. E.
(
1964
).
Theory of Psychological Measurement
(
McGraw-Hill
,
New York
), p.
228
.
10.
Goodman
,
S. S.
,
Mertes
,
I. B.
,
Lewis
,
J. D.
, and
Weissbeck
,
D. K.
(
2013
). “
Medial olivocochlear-induced transient-evoked otoacoustic emission amplitude shifts in individual subjects
,”
J. Assoc. Res. Otolaryngol.
14
,
829
842
.
11.
Guinan
,
J. J.
, Jr.
(
1996
). “
Physiology of olivocochlear efferents
,” in
The Cochlea
, edited by
P.
Dallos
,
A. N.
Popper
, and
R. R.
Fay
(
Springer-Verlag
,
New York
), pp.
435
502
.
12.
Guinan
,
J. J.
, Jr.
(
2006
). “
Olivocochlear efferents: Anatomy, physiology, function, and the measurement of efferent effects in humans
,”
Ear Hear.
27
,
589
607
.
13.
Guinan
,
J. J.
, Jr.
(
2011
). “
Physiology of the medial and lateral olivocochlear systems
,” in
Auditory and Vestibular Efferents
, edited by
D. K.
Ryugo
,
R. R.
Fay
, and
A. N.
Popper
(
Springer Science+Business Media, LLC
,
New York
), pp.
39
81
.
14.
Guinan
,
J. J.
, Jr.
(
2012
). “
Efferent System
,” in
Translational Perspectives in Auditory Neuroscience: Normal Aspects of Hearing
, edited by
K.
Tremblay
and
R.
Burkard
(
Plural Publishing
,
San Diego, CA
), pp.
283
323
.
15.
Guinan
,
J. J.
, Jr.
,
Backus
,
B. C.
,
Lilaonitkul
,
W.
, and
Aharonson
,
V.
(
2003
). “
Medial olivocochlear efferent reflex in humans: Otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs
,”
J. Assoc. Res. Otolaryngol.
4
,
521
540
.
16.
Henin
,
S.
,
Long
,
G. R.
, and
Thompson
,
S.
(
2014
). “
Wideband detection of middle ear muscle activation using swept-tone distortion product otoacoustic emissions
,”
J. Acoust. Soc. Am.
136
,
272
283
.
17.
Henin
,
S.
,
Thompson
,
S.
,
Abdelrazeq
,
S.
, and
Long
,
G. R.
(
2011
). “
Changes in amplitude and phase of distortion-product otoacoustic emission fine-structure and separated components during efferent activation
,”
J. Acoust. Soc. Am.
129
,
2068
2079
.
18.
Job
,
A.
,
Raynal
,
M.
,
Kossowski
,
M.
,
Studler
,
M.
,
Ghernaouti
,
C.
,
Baffioni-Venturi
,
A.
,
Roux
,
A.
,
Darolles
,
C.
, and
Guelorget
,
A.
(
2009
). “
Otoacoustic detection of risk of early hearing loss in ears with normal audiograms: A 3-year follow-up study
,”
Hear. Res.
251
,
10
16
.
19.
Kalluri
,
R.
, and
Shera
,
C. A.
(
2001
). “
Distortion-product source unmixing: a test of the two-mechanism model for DPOAE generation
,”
J. Acoust. Soc. Am.
109
,
622
637
.
20.
Kalluri
,
R.
, and
Shera
,
C. A.
(
2007
). “
Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions
,”
J. Acoust. Soc. Am.
121
,
2097
2110
.
21.
Kalluri
,
R.
, and
Shera
,
C. A.
(
2013
). “
Measuring stimulus-frequency otoacoustic emissions using swept tones
,”
J. Acoust. Soc. Am.
134
,
356
368
.
22.
Kumar
,
U. A.
,
Methi
,
R.
, and
Avinash
,
M. C.
(
2013
). “
Test/retest repeatability of effect contralateral acoustic stimulation on the magnitudes of distortion product ototacoustic emissions
,”
Laryngoscope
123
,
463
471
.
23.
Lapsley Miller
,
J. A.
,
Boege
,
P.
,
Marshall
,
L.
, and
Jeng
,
P. S.
(
2004a
). “
Transient-evoked otoacoustic emissions: Preliminary results for validity of TEOAEs implemented on Mimosa Acoustics' T2K measurement system v3.1.3
,” NSMRL Technical Report No. 1232 (Naval Submarine Medical Research Laboratory, Groton, CT).
24.
Lapsley Miller
,
J. A.
,
Boege
,
P.
,
Marshall
,
L.
,
Shera
,
C.
, and
Jeng
,
P. S.
(
2004b
). “
Stimulus-frequency otoacoustic emissions: Validity and reliability of SFOAEs implemented on Mimosa Acoustics' SFOAE measurement system v2.1.18
,” NSMRL Technical Report No. 1231 (Naval Submarine Medical Research Laboratory, Groton, CT).
25.
Lapsley Miller
,
J. A.
, and
Marshall
,
L.
(
2014
). “
Three methods for estimating the middle-ear muscle reflex (MEMR) using otoacoustic emission (OAE) measurement systems
,”
NSMRL Technical Report No. 1310
(Naval Submarine Medical Research Laboratory, Groton, CT).
26.
Lapsley Miller
,
J. A.
,
Marshall
,
L.
,
Heller
,
L. M.
, and
Hughes
,
L. M.
(
2006
). “
Low-level otoacoustic emissions may predict susceptibility to noise-induced hearing loss
,”
J. Acoust. Soc. Am.
120
,
280
296
.
27.
Liberman
,
M. C.
,
Liberman
,
L. D.
, and
Maison
,
S. F.
(
2014
). “
Efferent feedback slows cochlear aging
,”
J. Neurosci.
34
,
4599
4607
.
28.
Lilaonitkul
,
W.
, and
Guinan
,
J. J.
, Jr.
(
2009a
). “
Human medial olivocochlear reflex: Effects as functions of contralateral, ipsilateral, and bilateral elicitor bandwidths
,”
J. Assoc. Res. Otolaryngol.
10
,
459
470
.
29.
Lilaonitkul
,
W.
, and
Guinan
,
J. J.
, Jr.
(
2009b
). “
Reflex control of the human inner ear: A half-octave offset in medial efferent feedback that is consistent with an efferent role in the control of masking
,”
J. Neurophysiol.
101
,
1394
1406
.
30.
Long
,
G. R.
,
Talmadge
,
C. L.
, and
Lee
,
J.
(
2008
). “
Measuring distortion product otoacoustic emissions using continuously sweeping primaries
,”
J. Acoust. Soc. Am.
124
,
1613
1626
.
31.
Luebke
,
A. E.
, and
Foster
,
P. K.
(
2002
). “
Variation in inter-animal susceptibility to noise damage is associated with alpha 9 acetylcholine receptor subunit expression level
,”
J. Neurosci.
22
,
4241
4247
.
32.
Luebke
,
A. E.
,
Stagner
,
B. B.
,
Martin
,
G. K.
, and
Lonsbury-Martin
,
B. L.
(
2014
). “
Adaptation of distortion product otoacoustic emissions predicts susceptibility to acoustic over-exposure in alert rabbits)
,”
J. Acoust. Soc. Am.
135
,
1941
1949
.
33.
Maison
,
S. F.
, and
Liberman
,
M. C.
(
2000
). “
Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength
,”
J. Neurosci.
20
,
4701
4707
.
34.
Maison
,
S. F.
,
Luebke
,
A. E.
,
Liberman
,
M. C.
, and
Zuo
,
J.
(
2002
). “
Efferent protection from acoustic injury is mediated via alpha9 nicotinic acetylcholine receptors on outer hair cells
,”
J. Neurosci.
22
,
10838
10846
.
35.
Maison
,
S. F.
,
Usubuchi
,
H.
, and
Liberman
,
M. C.
(
2013
). “
Efferent feedback minimizes cochlear neuropathy from moderate noise exposure
,”
J. Neurosci.
33
,
5542
5552
.
36.
Marshall
,
L.
, and
Heller
,
L. M.
(
1996
). “
Reliability of transient-evoked otoacoustic emissions
,”
Ear Hear.
17
,
237
254
.
37.
Marshall
,
L.
, and
Lapsley Miller
,
J. A.
(
2014
). “
How can the auditory efferent system protect our ears from noise-induced hearing loss? Let us count the ways
,” in
Proceedings of the 12th International Mechanics of Hearing Workshop
, June 23, Attica, Greece.
38.
Marshall
,
L.
,
Lapsley Miller
,
J. A.
,
Heller
,
L. M.
,
Wolgemuth
,
K. S.
,
Hughes
,
L. M.
,
Smith
,
S.
, and
Kopke
,
R.
(
2009
). “
Detecting incipient inner-ear damage from impulse noise with otoacoustic emissions
,”
J. Acoust. Soc. Am.
125
,
995
1013
.
39.
Martin
,
A.
(
1976
). “
The equal energy concept applied to impulse noise
,” in
Effects of Noise on Hearing
, edited by
D.
Henderson
,
R.
Hamernik
,
D. S.
Dosanjh
, and
J. H.
Mills
(
Raven Press
,
New York
), pp.
421
454
.
40.
Meinke
,
D. K.
,
Stagner
,
B. B.
,
Martin
,
G. K.
, and
Lonsbury-Martin
,
B. L.
(
2005
). “
Human efferent adaptation of DPOAEs in the L(1),L(2) space
,”
Hear. Res.
208
,
89
100
.
41.
Mimosa Acoustics
(
2007
). “
TE Manual: Transient-evoked otoacoustic emissions measurement module manual for HearID R3.3
,” User Manual (Mimosa Acoustics, Inc., Champaign, IL).
42.
Mishra
,
S. K.
, and
Lutman
,
M. E.
(
2013
). “
Repeatability of click-evoked otoacoustic emission-based medial olivocochlear efferent assay
,”
Ear Hear.
34
,
789
798
.
43.
Muller
,
J.
,
Dietrich
,
S.
, and
Janssen
,
T.
(
2010
). “
Impact of three hours of discotheque music on pure-tone thresholds and distortion product otoacoustic emissions
,”
J. Acoust. Soc. Am.
128
,
1853
1869
.
44.
Muller
,
J.
, and
Janssen
,
T.
(
2008
). “
Impact of occupational noise on pure-tone threshold and distortion product otoacoustic emissions after one workday
,”
Hear. Res.
246
,
9
22
.
45.
Nordmann
,
A. S.
,
Bohne
,
B. A.
, and
Harding
,
G. W.
(
2000
). “
Histopathological differences between temporary and permanent threshold shift
,”
Hear. Res.
139
,
13
30
.
46.
Shera
,
C. A.
(
2003
). “
Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves
,”
J. Acoust. Soc. Am.
114
,
244
262
.
47.
Shera
,
C. A.
, and
Guinan
,
J. J.
, Jr.
(
1999
). “
Evoked otoacoustic emissions arise by two fundamentally different mechanisms: Taxonomy for mammalian OAEs
,”
J. Acoust. Soc. Am.
105
,
782
798
.
48.
Shupak
,
A.
,
Tal
,
D.
,
Sharoni
,
Z.
,
Oren
,
M.
,
Ravid
,
A.
, and
Pratt
,
H.
(
2007
). “
Otoacoustic emissions in early noise-induced hearing loss
,”
Otol. Neurotol.
28
,
745
752
.
49.
Talmadge
,
C. L.
,
Long
,
G. R.
,
Tubis
,
A.
, and
Dhar
,
S.
(
1999
). “
Experimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions
,”
J. Acoust. Soc. Am.
105
,
275
292
.
50.
Veuillet
,
E.
,
Collet
,
L.
, and
Duclaux
,
R.
(
1991
). “
Effect of contralateral acoustic stimulation on active cochlear micromechanical properties in human subjects: Dependence on stimulus variables
,”
J. Neurophysiol.
65
,
724
735
.
51.
Wagner
,
W.
,
Heppelmann
,
G.
,
Muller
,
J.
,
Janssen
,
T.
, and
Zenner
,
H. P.
(
2007
). “
Olivocochlear reflex effect on human distortion product otoacoustic emissions is largest at frequencies with distinct fine structure dips
,”
Hear. Res.
223
,
83
92
.
52.
Wagner
,
W.
, and
Heyd
,
A.
(
2011
). “
Measurement of medial olivocochlear efferent activity in humans: comparison of different distortion product otoacoustic emission-based paradigms
,”
Otol. Neurotol.
32
,
1379
1388
.
53.
Wolpert
,
S.
,
Heyd
,
A.
, and
Wagner
,
W.
(
2014
). “
Assessment of the noise-protective action of the olivocochlear efferents in humans
,”
Audiol. Neuro-Otol.
19
,
31
40
.
54.
Zhao
,
W.
, and
Dhar
,
S.
(
2010
). “
The effect of contralateral acoustic stimulation on spontaneous otoacoustic emissions
,”
J. Assoc. Res. Otolaryngol.
11
,
53
67
.
You do not currently have access to this content.