Elastic wave velocities in metallic structures are affected by variations in environmental conditions such as changing temperature. This paper extends the theory of acoustoelasticity by allowing thermally induced strains in unconstrained isotropic media, and it experimentally examines the velocity variation of Lamb waves in aluminum plates (AL-6061) due to isothermal temperature deviations. This paper presents both thermally induced acoustoelastic constants and thermally varying effective Young's modulus and Poisson's ratio which include the third order elastic material constants. The experimental thermal sensitivity of the phase velocity (vP/θ) for both the symmetric and antisymmetric modes are bounded by two theories, the acoustoelastic Lamb wave theory with thermo-acoustoelastic tensors and the thermoelastic Lamb wave theory using an effective thermo-acoustoelastic moduli. This paper shows the theoretical thermally induced acoustoelastic Lamb wave thermal sensitivity (vP/θ) is an upper bound approximation of the experimental thermal changes, but the acoustoelastic Lamb wave theory is not valid for predicting the antisymmetric (A0) phase velocity at low frequency-thickness values, <1.55 MHz mm for various temperatures.

1.
J.
Rose
, “
Ultrasonic guided waves in structural health monitoring
,”
Key Eng. Mater.
270
,
14
21
(
2004
).
2.
P.
Cawley
and
D.
Alleyne
, “
The use of Lamb waves for the long range inspection of large structures
,”
Ultrasonics
34
,
287
290
(
1996
).
3.
B.
Lee
,
G.
Manson
, and
W.
Staszewski
, “
Environmental effects on Lamb wave responses from piezoceramic sensors
,” in
Materials Science Forum
, edited by
M.
Cartmell
(
Trans Tech Publ
,
2003
), Vol.
440
, pp.
195
202
.
4.
M. J.
Schulz
,
M. J.
Sundaresan
,
J.
Mcmichael
,
D.
Clayton
,
R.
Sadler
, and
B.
Nagel
, “
Piezoelectric materials at elevated temperature
,”
J. Intell. Mater. Syst. Struct.
14
,
693
705
(
2003
).
5.
H.
Sohn
, “
Effects of environmental and operational variability on structural health monitoring
,”
Philos. Trans. R. Soc. A
365
,
539
560
(
2007
).
6.
F.
Chen
and
P. D.
Wilcox
, “
The effect of load on guided wave propagation
,”
Ultrasonics
47
,
111
122
(
2007
).
7.
M.
Castaings
and
B.
Hosten
, “
Ultrasonic guided waves for health monitoring of high-pressure composite tanks
,”
NDT/E Int.
41
,
648
655
(
2008
).
8.
Y.
Lu
and
J. E.
Michaels
, “
Feature extraction and sensor fusion for ultrasonic structural health monitoring under changing environmental conditions
,”
IEEE Sensors J.
9
,
1462
1471
(
2009
).
9.
R. A.
Toupin
and
B.
Bernstein
, “
Sound waves in deformed perfectly elastic materials. Acoustoelastic effect
,”
J. Acoust. Soc. Am.
33
,
216
225
(
1961
).
10.
Y.-H.
Pao
and
U.
Gamer
, “
Acoustoelastic waves in orthotropic media
,”
J. Acoust. Soc. Am.
77
,
806
812
(
1985
).
11.
A.
Norris
, “
Finite amplitude waves in solids
,”in
Nonlinear Acoustics
, edited by
M. F.
Hamilton
and
D. T.
Blackstock
(
Academic Press
, Chestnut Hill, MA,
1998
), pp.
263
278
.
12.
D.
Husson
, “
A perturbation theory for the acoustoelastic effect of surface waves
,”
J. Appl. Phys.
57
,
1562
1568
(
1985
).
13.
J.
Su
,
Z.
Kuang
, and
H.
Liu
, “
Love wave in zno/sio2/si structure with initial stresses
,”
J. Sound Vib.
286
,
981
999
(
2005
).
14.
S.
Chaki
and
G.
Bourse
, “
Stress level measurement in prestressed steel strands using acoustoelastic effect
,”
Exp. Mech.
49
,
673
681
(
2009
).
15.
T.
Tokuoka
, “
Thermal effect on acoustoelasticity of isotropic elastic materials
,”
J. Acoust. Soc. Am.
67
,
38
41
(
1980
).
16.
J. E.
Michaels
,
T. E.
Michaels
, and
R. S.
Martin
, “
Analysis of global ultrasonic sensor data from a full scale wing panel test
,”
AIP Conf. Proc.
1096
,
950
957
(
2009
).
17.
N.
Gandhi
,
J. E.
Michaels
, and
S. J.
Lee
, “
Acoustoelastic lamb wave propagation in biaxially stressed plates
,”
J. Acoust. Soc. Am.
132
,
1284
1293
(
2012
).
18.
N.
Gandhi
, “
Determination of dispersion curves for acoustoelastic Lamb wave propagation
,” Master's thesis,
Georgia Institute of Technology, Atlanta, GA
,
2010
.
19.
J.
Dodson
and
D.
Inman
, “
Thermal sensitivity of lamb waves for structural health monitoring applications
,”
Ultrasonics
53
,
677
685
(
2013
).
20.
H. M.
Ledbetter
and
R. P.
Reed
, “
Elastic properties of metals and alloys, I. Iron, nickel and iron-nickel alloys
,”
J. Phys. Chem. Ref. Data
2
,
531
617
(
1973
).
21.
J. A.
Garber
and
A. V.
Granato
, “
Theory of the temperature dependence of second-order elastic constants in cubic materials
,”
Phys. Rev. B
11
,
3990
3997
(
1975
).
22.
J. A.
Garber
and
A. V.
Granato
, “
Fourth-order elastic constants and the temperature dependence of second-order elastic constants in cubic materials
,”
Phys. Rev. B
11
,
3998
4007
(
1975
).
23.
I. A.
Viktorov
,
Rayleigh and Lamb Waves: Physical Theory and Applications
(
Plenum Press
,
New York
,
1967
), pp.
67
83
.
24.
J. R.
Asay
and
A. H.
Guenther
, “
Ultrasonic studies of 1060 and 6061-T6 aluminum
,”
J. Appl. Phys.
38
,
4086
4088
(
1967
).
25.
F.
Augereau
,
D.
Laux
,
L.
Allais
,
M.
Mottot
, and
C.
Caes
, “
Ultrasonic measurement of anisotropy and temperature dependence of elastic parameters by a dry coupling method applied to a 6061-T6 alloy
,”
Ultrasonics
46
,
34
41
(
2007
).
26.
APC International, Limited, available at www.americanpiezo.com (Last viewed January 7,
2014
).
27.
Epoxy Technology, available at www.epotek.com (Last viewed January 7,
2014
).
28.
A.
Raghavan
and
C. E.
Cesnik
, “
Effects of elevated temperature on guided-wave structural health monitoring
,”
J. Intell. Mater. Syst. Struct.
19
,
1383
1398
(
2008
).
29.
National Instruments Corporation, available at www.ni.com (Last viewed January 7,
2018
).
30.
R. H.
Blanc
, “
Transient wave propagation methods for determining the viscoelastic properties of solids
,”
J. Appl. Mech.
60
,
763
768
(
1993
).
31.
E.
Schneider
, “
Ultrasonic techniques
,” in
Structural and Residual Stress Analysis by Nondestructive Methods
, edited by
V.
Hauk
(
Elsevier
,
Amsterdam
,
1997
), pp.
522
565
.
32.
M.
Lematre
,
G.
Feuillard
,
E. L.
Clezio
, and
M.
Lethiecq
, “
Modeling of the influence of a prestress gradient on guided wave propagation in piezoelectric structures
,”
J. Acoust. Soc. Am.
120
,
1964
1975
(
2006
).
33.
J.
Ignaczak
and
M.
Ostoja-Starzewski
,
Thermoelasticity with Finite Wave Speeds
(
Oxford University Press
,
New York
,
2009
), pp.
1
10
.
34.
F. D.
Murnaghan
, “
Finite deformations of an elastic solid
,”
Am. J. Math.
59
,
235
260
(
1937
).
You do not currently have access to this content.