In September 2012, the free-falling, deep-diving instrument platform Deep Sound III descended to the bottom of the Tonga Trench, where it resided at a depth of 8515 m for almost 3 h, recording ambient noise data on four hydrophones arranged in a vertical L-shaped configuration. The time series from each of the hydrophones yielded the power spectrum of the noise over the frequency band 3 Hz to 30 kHz. The spatial coherence functions, along with the corresponding cross-correlation functions, were recovered from all available hydrophone pairs in the vertical and the horizontal. The vertical coherence and cross-correlation data closely follow the predictions of a simple theory of sea-surface noise in a semi-infinite ocean, suggesting that the seabed in the Tonga Trench is a very poor acoustic reflector, which is consistent with the fact that the sediment at the bottom of the trench consists of very-fine-grained material having an acoustic impedance similar to that of seawater. The horizontal coherence and cross-correlation data are a little more complicated, showing evidence of (a) bathymetric shadowing of the noise by the walls of the trench and (b) highly directional acoustic arrivals from the research vessel supporting the experiment.

1.
M.
Greenspan
and
C. E.
Tschiegg
, “
Sing-around ultrasonic velocimeter for liquids
,”
Rev. Sci. Inst.
28
,
897
901
(
1957
).
2.
C. E.
Tschiegg
and
E. E.
Hays
, “
Transistorized velocimeter for measuring the speed of sound in the sea
,”
J. Acoust. Soc. Am.
31
,
1038
1039
(
1959
).
3.
K.
Taira
,
D.
Yanagimoto
, and
S.
Kitagawa
, “
Deep CTD casts in the Challenger Deep
,
Mariana Trench
,”
J. Phys. Ocean.
61
,
447
454
(
2005
).
4.
D. R.
Barclay
,
F.
Simonet
, and
M. J.
Buckingham
, “
Deep Sound: A free-falling sensor platform for depth-profiling ambient noise in the deep ocean
,”
Mar. Tech. Soc. J.
43
,
144
150
(
2009
).
5.
D. R.
Barclay
and
M. J.
Buckingham
, “
The depth dependence of rain noise in the Philippine Sea
,”
J. Acoust. Soc. Am.
133
,
2576
2585
(
2013
).
6.
D. R.
Barclay
and
M. J.
Buckingham
, “
Depth-dependence of wind-driven, broadband ambient noise in the Philippine Sea
,”
J. Acoust. Soc. Am.
133
,
62
71
(
2013
).
7.
P. F.
Worcester
,
R. K.
Andrew
,
A. B.
Baggeroer
,
J. A.
Colosi
,
G.
D'Spain
,
M.
Dzieciuch
,
K. D.
Heaney
,
B. M.
Howe
,
J. N.
Kemp
, and
J. A.
Mercer
, “
Acoustic propagation and ambient noise in the Philippine Sea: The 2009 and 2010–2011 Philippine Sea experiments
,”
J. Acoust. Soc. Am.
128
,
2385
(
2010
).
8.
P. F.
Worcester
and
R. C.
Spindel
, “
North Pacific Acoustic Laboratory
,”
J. Acoust. Soc. Am.
117
,
1499
1510
(
2005
).
9.
D. R.
Barclay
and
M. J.
Buckingham
, “
Ambient noise in the Mariana Trench
,”
J. Acoust. Soc. Am.
128
,
2300
(
2010
); see also the Lay Language paper, “Deep ocean ambient noise in the Mariana Trench,” http://acoustics.org/pressroom/httpdocs/160th/barclay.html (Last viewed 9/30/2014.)
10.
R. A.
Finger
,
L. A.
Abbagnaro
, and
B. B.
Bauer
, “
Measurements of low-velocity flow noise on pressure and pressure gradient hydrophones
,”
J. Acoust. Soc. Am.
65
,
1407
1412
(
1979
).
11.
B. R.
Thomas
,
E. C.
Kent
, and
V. R.
Swail
, “
Methods to homogenize wind speeds from ships and buoys
,”
Int. J. Clim.
25
,
979
995
(
2005
).
12.
J. L.
Walmsley
, “
On theoretical wind speed and temperature profiles over the sea with applications to data from Sable Island
,
Nova Scotia
,”
Atmosphere-Ocean
26
,
203
233
(
1988
).
13.
S.
Maus
,
S.
Macmillan
,
S.
McLean
,
B.
Hamilton
,
A.
Thomson
,
M.
Nair
, and
C.
Rollins
, NOAA Technical Report No. NESDIS/NGDC (
2010
).
14.
D. R.
Barclay
and
M. J.
Buckingham
, “
On the shapes of natural sand grains
,”
J. Geophys. Res.
114
,
1
12
, doi: (
2009
).
15.
M. J.
Buckingham
, “
Compressional and shear wave properties of marine sediments: Comparisons between theory and data
,”
J. Acoust. Soc. Am.
117
,
137
152
(
2005
).
16.
National Geophysical Data Center, “
The NGDC seafloor sediment geotechnical properties database
,” NOAA (
1976
).
17.
M. D.
Richardson
,
K. B.
Briggs
,
F. A.
Bowles
, and
J. H.
Tietjen
, “
A depauperate benthic assemblage from the nutrient-poor sediments of the Puerto-Rico Trench
,”
Deep Sea Res. Part I: Oceanogr. Res. Papers
42
(
3
),
351
364
(
1995
).
18.
D.
Walsh
, “
In the beginning… a personal view
,”
Mar. Tech. Soc. J.
43
(
5
),
9
14
(
2009
).
19.
G. C.
Johnson
, “
Deep water properties
,
velocities
,
and dynamics over ocean trenches
,”
J. Mar. Res.
56
,
329
347
(
1998
).
20.
V. O.
Knudsen
,
R. S.
Alford
, and
J. W.
Emling
, “
Underwater ambient noise
,”
J. Mar. Res.
7
,
410
429
(
1948
).
21.
G. M.
Wenz
, “
Acoustic ambient noise in the ocean: Spectra and sources
,”
J. Acoust. Soc. Am.
34
,
1936
1956
(
1962
).
22.
A. B.
Baggeroer
,
E. K.
Scheer
, and
The NPAL Group
(
J. A.
Colosi
,
B. D.
Cornuelle
,
B. D.
Dushaw
,
M. A.
Dzieciuch
,
B. M.
Howe
,
J. A.
Mercer
,
W. H.
Munk
,
R. C.
Spindel
, and
P. F.
Worcester
), “
Statistics and vertical directionality of low-frequency ambient noise at the North Pacific Acoustics Laboratory site
,”
J. Acoust. Soc. Am.
117
,
1643
1665
(
2005
).
23.
R. D.
Gaul
,
D. P.
Knobles
,
J. A.
Shooter
, and
A. F.
Wittenborn
, “
Ambient noise analysis of deep-ocean measurements in the Northeast Pacific
,”
IEEE J. Ocean. Eng.
32
,
497
512
(
2007
).
24.
R.
Marrett
and
N. R.
Chapman
, “
Low-frequency ambient-noise measurements in the South Fiji Basin
,”
IEEE J. Ocean. Eng.
15
,
311
315
(
1990
).
25.
S. W.
Marshall
, “
Depth dependence of ambient noise
,”
IEEE J. Ocean. Eng.
30
,
275
281
(
2005
).
26.
C. S.
McCreery
,
F. K.
Duennebier
, and
G. H.
Sutton
, “
Correlation of deep ocean noise (0.4–30 Hz) with wind
,
and the Holu Spectrum—A worldwide constant
,”
J. Acoust. Soc. Am.
93
,
2639
2648
(
1993
).
27.
J. A.
Shooter
,
T. E.
DeMary
, and
A. F.
Wittenborn
, “
Depth dependence of noise resulting from ship traffic and wind
,”
IEEE J. Ocean. Eng.
15
,
292
298
(
1990
).
28.
H.
Cox
, “
Spatial correlation in arbitrary noise fields with application to ambient sea noise
,”
J. Acoust. Soc. Am.
54
,
1289
1301
(
1973
).
29.
M. J.
Buckingham
, “
Theory of the directionality and spatial coherence of wind-driven ambient noise in a deep ocean with attenuation
,”
J. Acoust. Soc. Am.
134
,
950
958
(
2013
).
30.
M. J.
Buckingham
, “
On the two-point cross-correlation function of anisotropic, spatially homogeneous ambient noise in the ocean and its relationship to the Green's function
,”
J. Acoust. Soc. Am.
129
,
3562
3576
(
2011
).
31.
B. F.
Cron
and
C. H.
Sherman
, “
Addendum: Spatial correlation functions for various noise models [J. Acoust. Soc. Am. 34, 1732–1736 (1962)]
,”
J. Acoust. Soc. Am.
38
,
885
(
1965
).
32.
B. F.
Cron
and
C. H.
Sherman
, “
Spatial correlation functions for various noise models
,”
J. Acoust. Soc. Am.
34
,
1732
1736
(
1962
).
33.
M. J.
Buckingham
and
N. M.
Carbone
, “
Source depth and the spatial coherence of ambient noise in the ocean
,”
J. Acoust. Soc. Am.
102
,
2637
2644
(
1997
).
34.
L. M.
Brekhovskikh
,
Waves in Layered Media
, 2nd ed. (
Academic Press
,
San Diego
,
1980
), p.
8
.
35.
M. J.
Buckingham
,
Noise in Electronic Devices and Systems
(
Ellis Horwood
,
Chichester, UK
,
1983
), p.
48
.
36.
M. J.
Buckingham
, “
Cross-correlation in band-limited ocean ambient noise fields
,”
J. Acoust. Soc. Am.
131
(
4
),
2643
2657
(
2012
).
37.
P.
Roux
,
K. G.
Sabra
,
W. A.
Kuperman
, and
A.
Roux
, “
Ambient noise cross-correlation in free space: Theoretical approach
,”
J. Acoust. Soc. Am.
117
,
79
84
(
2005
).
38.
S. C.
Walker
and
M. J.
Buckingham
, “
Spatial coherence and cross-correlation in three-dimensional ambient noise fields in the ocean
,”
J. Acoust. Soc. Am.
131
,
1079
1086
(
2012
).
You do not currently have access to this content.