Estimates of particle size distributions (PSDs) in solid-in-liquid suspensions can be obtained from measurements of ultrasonic wave attenuation. The technique is based on adaptively fitting theoretical wave propagation models to the measured data across a frequency range. These models break down at high solid concentrations and it is believed that this failure is due to the effective viscosity of the mixture in the vicinity of the particles being different from that of the continuous phase. This paper discusses PSD estimation when a number of different viscosity formulations are incorporated into the wave propagation model. The viscosity model due to Happel provides the best estimate of PSD in suspensions of medium concentration.

1.
R. E.
Challis
,
M. J. W.
Povey
,
M. L.
Mather
, and
A. K.
Holmes
, “
Ultrasound techniques for characterizing colloidal dispersions
,”
Rep. Prog. Phys.
68
(
7
),
1541
1637
(
2005
).
2.
BS ISO 20998-1, “
Measurement and characterization of particles by acoustic methods—Part 1: Concepts and procedures in ultrasonic attenuation spectroscopy
,” British Standards Institute, p.
30
(
2012
).
3.
A. K.
Holmes
,
R. E.
Challis
, and
D. J.
Wedlock
, “
A wide bandwidth study of ultrasound velocity and attenuation in suspensions: comparison of theory with experimental measurements
,”
J. Colloid Interface Sci.
156
(
2
),
261
268
(
1993
).
4.
M. C.
Davis
, “
Coal slurry diagnostics by ultrasound transmission
,”
J. Acoust. Soc. Am.
64
(
2
),
406
410
(
1978
).
5.
D. J.
McClements
and
M. J. W.
Povey
, “
Scattering of ultrasound by emulsions
,”
J. Phys. D: Appl. Phys.
22
(
1
),
38
47
(
1989
).
6.
A. K.
Holmes
,
R. E.
Challis
, and
D. J.
Wedlock
, “
A wide-bandwidth ultrasonic study of suspensions: the variation of velocity and attenuation with particle size
,”
J. Colloid Interface Sci.
168
(
2
),
339
348
(
1994
).
7.
A. K.
Hipp
,
G.
Storti
, and
M.
Morbidelli
, “
Particle sizing in colloidal dispersions by ultrasound. Model calibration and sensitivity analysis
,”
J. Phys. D: Appl. Phys.
15
(
7
),
2338
2345
(
1999
).
8.
S.
Meyer
,
S.
Berrut
,
T. I. J.
Goodenough
,
V. S.
Rajendram
,
V. J.
Pinfield
, and
M. J. W.
Povey
, “
A comparative study of ultrasound and laser light diffraction techniques for particle size determination in dairy beverages
,”
Meas. Sci. Technol.
17
(
2
),
289
297
(
2006
).
9.
D. W.
Marquardt
, “
An algorithm for least-squares estimation of nonlinear parameters
,”
J. Soc. Ind. Appl. Math.
11
(
2
),
431
441
(
1963
).
10.
D. W.
Marquardt
, “
Solution of nonlinear chemical engineering models
,”
Chem. Eng. Prog.
55
(
6
),
65
70
(
1959
).
11.
R. E.
Challis
,
A. K.
Holmes
, and
V.
Pinfield
, “
Ultrasonic bulk wave propagation in concentrated heterogeneous slurries
,” in
Ultrasonic Wave Propagation in Non Homogeneous Media
, Springer Proceeding in Physics, edited by
A.
Léger
and
M.
Deschamps
(
Springer
,
Berlin
,
2009
), Vol.
128
, pp.
87
98
.
12.
M. L.
Mather
,
R. E.
Challis
,
A. K.
Holmes
, and
A.
Kalashnikov
, “
On the problem of the NDE of concentrated slurries
,”
Rev. Prog. Quant. Nondestr. Eval., AIP Conf. Proc.
760
(
1
),
1266
1272
(
2005
).
13.
O.
Umnova
,
K.
Attenborough
, and
K. M.
Li
, “
Cell model calculations of dynamic drag parameters in packings of spheres
,”
J. Acoust. Soc. Am.
107
(
6
),
3113
3119
(
2000
).
14.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range
,”
J. Acoust. Soc. Am.
28
(
2
),
168
178
(
1956a
).
15.
M. A.
Biot
, “
Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range
,”
J. Acoust. Soc. Am.
28
(
2
),
179
191
(
1956b
).
16.
M. A.
Biot
, “
Generalized theory of acoustic propagation in porous dissipative media
,”
J. Acoust. Soc. Am.
34
(
9A
),
1254
1264
(
1962a
).
17.
M. A.
Biot
, “
Mechanics of deformation and acoustic propagation in porous media
,”
J. Appl. Phys.
33
(
4
),
1482
1498
(
1962b
).
18.
P. C.
Carman
,
Flow of Gases Through Porous Media
(
Butterworths
,
London
,
1956
), p.
182
.
19.
J. M.
Hovem
, “
Viscous attenuation of sound in suspensions of high-porosity marine sediments
,”
J. Acoust. Soc. Am.
67
(
5
),
1559
1563
(
1980a
).
20.
J. M.
Hovem
, “
Erratum: Viscous attenuation of sound in suspensions of high-porosity marine sediments
,”
J. Acoust. Soc. Am.
68
(
5
),
1531
(
1980b
).
21.
A.
Einstein
, “
Eine neue Bestimmung der Molekul-dimensionen (A new determination of molecular dimensions)
,”
Ann. Phys.
324
(
2
),
289
306
(
1906
).
22.
V.
Vand
, “
Viscosity of solutions and suspensions. I. Theory
,”
J. Phys. Colloid Chem.
52
(
2
),
277
299
(
1948a
).
23.
V.
Vand
, “
Viscosity of solutions and suspensions. II. Experimental determination of the viscosity-concentration function of spherical suspensions
,”
J. Phys. Colloid Chem.
52
(
2
),
300
314
(
1948b
).
24.
V.
Vand
, “
Viscosity of solutions and suspensions. III. Theoretical interpretation of viscosity of sucrose solutions
,”
J. Phys. Colloid Chem.
52
(
2
),
314
321
(
1948c
).
25.
H.
Hasimoto
, “
On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres
,”
J. Fluid Mech.
5
(
2
),
317
328
(
1959
).
26.
A. A.
Zick
and
G. M.
Homsy
, “
Stokes flow through periodic arrays of spheres
,”
J. Fluid Mech.
115
(
1
),
13
26
(
1982
).
27.
R. L.
Gibson
and
M. N.
Toksoz
, “
Viscous attenuation of acoustic waves in suspensions
,”
J. Acoust. Soc. Am.
85
(
5
),
1925
1934
(
1989
).
28.
T. A.
Strout
, “
Attenuation of sound in high-concentration suspensions: Development and application of an oscillatory cell model
,” Ph.D. thesis,
Department of Chemical Engineering, University of Maine
,
1991
.
29.
S.
Kuwabara
, “
The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers
,”
J. Phys. Soc. Jpn.
14
(
4
),
527
532
(
1959
).
30.
J.
Happel
, “
Viscosity of suspensions of uniform spheres
,”
J. Appl. Phys.
28
(
11
),
1288
1292
(
1957
).
31.
J.
Happel
, “
Viscous flow in multiparticle systems: Slow motion of fluids relative to beds of spherical particles
,”
AIChE J.
4
(
2
),
197
201
(
1958
).
32.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics—With Special Applications to Particulate Media
(
Prentice Hall
,
Englewood Cliffs, NJ
,
1965
), p.
553
.
33.
A. H.
Harker
and
J. A. G.
Temple
, “
Velocity and attenuation of ultrasound in suspensions of particles in fluids
,”
J. Phys. D: Appl. Phys.
21
(
11
),
1576
1588
(
1988
).
34.
J. S.
Tebbutt
, “
Ultrasonic absorption and phase velocity spectra colloids: Theory, simulation and measurement
,” Ph.D. thesis,
Department of Physics, University of Keele
,
1996
.
35.
P. S.
Epstein
and
R. R.
Carhart
, “
The absorption of sound in suspensions and emulsions. I. Water fog in air
,”
J. Acoust. Soc. Am.
25
(
3
),
553
565
(
1953
).
36.
J. R.
Allegra
and
S. A.
Hawley
, “
Attenuation of sound in suspensions and emulsions: Theory and experiments
,”
J. Acoust. Soc. Am.
51
(
5B
),
1545
1564
(
1972
).
37.
P.
Lloyd
and
M. V.
Berry
, “
Wave propagation through an assembly of spheres. Part I. V. Relations between different scattering theories
,”
Proc. Phys. Soc.
91
(
3
),
678
688
(
1967
).
38.
R. E.
Challis
,
J. S.
Tebbutt
, and
A. K.
Holmes
, “
Equivalence between three scattering formulations for ultrasonic wave propagation in particulate mixtures
,”
J. Phys., D: Appl. Phys.
31
(
24
),
3481
3497
(
1998
).
39.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data
, 91st ed. (
CRC Press
,
London
,
2010
), p.
2610
.
40.
G. W. C.
Kaye
and
T. H.
Laby
,
Tables of Physical and Chemical Constants
, 16th ed. (
Longmans
,
Harlow
,
1995
), p.
144
.
41.
V. A. Del
Grosso
and
C. W.
Mader
, “
Speed of sound in pure water
,”
J. Acoust. Soc. Am.
52
(
5B
),
1442
1446
(
1972
).
42.
M. C.
Smith
and
R. T.
Beyer
, “
Ultrasonic absorption in water in the temperature range 0°–80 °C
,”
J. Acoust. Soc. Am.
20
(
5
),
608
610
(
1948
).
43.
R.
Al-Lashi
, “
Novel approaches to ultrasonic particle sizing in suspensions with uncertain properties, and to the design of ultrasonic spectrometers
,” Ph.D. thesis,
Electrical and Electronic Engineering Department, University of Nottingham
,
2011
.
44.
F.
Luppé
,
J.
Conoir
, and
A.
Norris
, “
Effective wave numbers for thermo-viscoelastic media containing random configurations of spherical scatterers
,”
J. Acoust. Soc. Am.
131
(
2
),
1113
1120
(
2012
).
45.
A. K.
Hipp
,
G.
Storti
, and
M.
Morbidelli
, “
Acoustic characterization of concentrated suspensions and emulsions. 1. Model analysis
,”
Langmuir
18
(
2
),
391
404
(
2002
).
46.
A. K.
Hipp
,
G.
Storti
, and
M.
Morbidelli
, “
Acoustic characterization of concentrated suspensions and emulsions. 2. Experimental validation
,”
Langmuir
18
(
2
),
405
412
(
2002
).
47.
L. W.
Anson
and
R. C.
Chivers
, “
Ultrasonic scattering from spherical shells including viscous and thermal effects
,”
J. Acoust. Soc. Am.
93
,
1687
1699
(
1993
).
You do not currently have access to this content.