This paper is to develop an aeroacoustic model for a type of modulation fan termed as rotary subwoofer that is capable of radiating low-frequency sound at high sound pressure levels. The rotary subwoofer is modeled as a baffled monopole whose source strength is specified by the fluctuating mass flow rate produced by the pitching blades that rotate at constant speed. An immersed boundary method is established to simulate the detailed unsteady flow around the blades and also to estimate the source strength for the prediction of the far-field sound pressure level (SPL). The numerical simulation shows that the rotary subwoofer can output oscillating air flow that is in phase with the pitching motion of the blades. It is found that flow separation is more likely to occur on the pitching blades at higher modulation frequency, resulting in the reduction of the radiated SPL. Increasing the maximum blade excursion is one of the most effective means to enhance the sound radiation, but this effect can also be compromised by the flow separation. As the modulation frequency increases, correspondingly increasing the rotational speed or using larger blade solidity is beneficial to suppressing the flow separation and thus improving the acoustic performance of the rotary subwoofer.

1.
A. J.
Bedard
and
T. M.
Georges
, “
Atmospheric infrasound
,”
Phys. Today
53
(
3
),
32
37
(
2000
).
2.
A. L.
Pichon
,
M.
Garces
,
E.
Blanc
,
M.
Barthelemy
, and
D. P.
Drob
, “
Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde
,”
J. Acoust. Soc. Am.
111
(
1
),
629
641
(
2002
).
3.
Q. A.
Shams
,
A. J.
Zuckerwar
,
C. G.
Burkett
,
G. R.
Weistroffer
, and
D. R.
Hugo
, “
Experimental investigation into infrasonic emissions from atmospheric turbulence
,”
J. Acoust. Soc. Am.
133
(
3
),
1269
1280
(
2013
).
4.
R. S.
Matoza
,
M. A. H.
Hedlin
, and
M. A.
Garcés
, “
An infrasound array study of Mount St. Helens
,”
J. Volcanol. Geotherm. Res.
160
,
249
326
(
2007
).
5.
B.
Berglund
,
P.
Hassmen
, and
R. F. Soames
Job
, “
Sources and effects of low-frequency noise
,”
J. Acoust. Soc. Am.
99
,
2985
3002
(
1996
).
6.
J.
Park
and
M.
Garcés
, “
The rotary subwoofer: A controllable infrasound source
,”
J. Acoust. Soc. Am.
125
(
4
),
2006
2012
(
2009
).
7.
J. E. Ffowcs
Williams
and
D. L.
Hawkings
, “
Sound generation by turbulence and surfaces in arbitrary motion
,”
Philos. Trans. R. Soc. London A
264
,
321
342
(
1969
).
8.
K. S.
Brentner
and
F.
Farassat
, “
Modeling aerodynamically generated sound of helicopter rotors
,”
Prog. Aerosp. Sci.
39
,
83
102
(
2003
).
9.
C. S.
Peskin
, “
Numerical analysis of blood flow in the heart
,”
J. Comput. Phys.
25
,
220
252
(
1977
).
10.
L. E.
Kinsler
,
A. R.
Frey
,
A. B.
Coppens
, and
J. V.
Sanders
,
Fundamentals of Acoustics
(
John Wiley and Sons
,
New York
,
2000
), Chap. 7, pp.
179
181
.
11.
D.
Goldstein
,
R.
Handler
, and
L.
Sirovich
, “
Modeling a no-slip flow with an external force field
,”
J. Comput. Phys.
105
,
354
366
(
1993
).
12.
M.-C.
Lai
and
C. S.
Peskin
, “
An immersed boundary method with formal second-order accuracy and reduced numerical viscosity
,”
J. Comput. Phys.
160
,
705
719
(
2000
).
13.
D. C.
Wilcox
,
Turbulence Modeling for CFD
(
DCW Industries, La Cañada Flintridge
,
CA
,
1993
), Chap. 4, pp.
87
89
.
14.
L. A.
Miller
and
C. S.
Peskin
, “
When vortices stick: An aerodynamic transition in tiny insect flight
,”
J. Exp. Biol.
207
,
3073
3088
(
2004
).
15.
R. V.
Chima
, “
Explicit multigrid algorithm for quasi-three-dimensional viscous flows in turbomachinery
,”
J. Propul. Power
3
(
5
),
397
405
(
1987
).
16.
M. B.
Giles
, “
Calculation of unsteady wake/rotor interaction
,”
J. Propul. Power
4
(
4
),
356
362
(
1988
).
You do not currently have access to this content.