A number of measures were evaluated with regard to their ability to predict the speech-recognition benefit of single-channel noise reduction (NR) processing. Three NR algorithms and a reference condition were used in the evaluation. Twenty listeners with impaired hearing and ten listeners with normal hearing participated in a blinded laboratory study. An adaptive speech test was used. The speech test produces results in terms of signal-to-noise ratios that correspond to equal speech recognition performance (in this case 80% correct) with and without the NR algorithms. This facilitates a direct comparison between predicted and experimentally measured effects of noise reduction algorithms on speech recognition. The experimental results were used to evaluate nine different predictive measures, one in two variants. The best predictions were found with the Coherence Speech Intelligibility Index (CSII) [Kates and Arehart (2005), J. Acoust. Soc. Am. 117(4), 2224–2237]. In general, measures using correlation between the clean speech and the processed noisy speech, as well as other measures that are based on short-time analysis of speech and noise, seemed most promising

1.
ANSI
(
1997
). S3.5,
American National Standard Methods for the Calculation of the Speech Intelligibility Index
(
Acoustical Society of America
,
New York
).
2.
Bentler
,
R.
,
Wu
,
Y.-H.
,
Kettel
,
J.
, and
Hurtig
,
R.
(
2008
). “
Digital noise reduction: Outcomes from laboratory and field studies
,”
Int. J. Audiol.
47
(
8
),
447
460
.
3.
Bentler
,
R. A.
(
2006
). “
Digital noise reduction: An overview
,”
Trends Amplif.
10
(
2
),
67
82
.
4.
Boymans
,
M.
, and
Dreschler
,
W. A.
(
2000
). “
Field trials using a digital hearing aid with active noise reduction and dual-microphone directionality
,”
Audiology
39
(
5
),
260
268
.
5.
Brons
,
I.
,
Houben
,
R.
, and
Dreschler
,
W. A.
(
2013
). “
Perceptual effects of noise reduction with respect to personal preference, speech intelligibility, and listening effort
,”
Ear Hear.
34
(
1
),
29
41
.
6.
Byrne
,
D.
, and
Dillon
,
H.
(
1986
). “
The National Acoustic Laboratories (NAL) new procedure for selecting the gain and frequency response of a hearing aid
,”
Ear Hear.
7
(
4
),
257
265
.
7.
Byrne
,
D.
,
Dillon
,
H.
,
Ching
,
T.
,
Katsch
,
R.
, and
Keidser
,
G.
(
2001
). “
NAL–NL1 Procedure for fitting nonlinear hearing aids: Characteristics and comparisons with other procedures
,”
J. Am. Acad. Audiol.
12
(
1
),
37
51
.
8.
Chung
,
K.
(
2004
), “
Challenges and recent developments in hearing aids: I. Speech understanding in noise, microphone technologies and noise reduction algorithms
,”
Trends Amplif.
8
(
4
),
83
124
.
9.
Cooke
,
M.
(
2006
). “
A glimpsing model of speech perception in noise
.”
J. Acoust. Soc. Am.
119
(
3
),
1562
1573
.
10.
Dahlquist
,
M.
,
Lutman
,
M. E.
,
Wood
,
S.
, and
Leijon
,
A.
(
2005
). “
Methodology for quantifying perceptual effects from noise suppression systems
,”
Int. J. Audiol.
44
(
12
),
721
732
.
11.
Fletcher
,
H.
(
1929
).
Speech and Hearing
(
Van Nostrand
,
New York)
,
331
pp.
12.
Fletcher
,
H.
, and
Galt
,
R.
(
1950
). “
The perception of speech and its relation to telephony
,”
J. Acoust. Soc. Am.
22
(
2
),
89
151
.
13.
Hagerman
,
B.
(
1982
). “
Sentences for testing speech intelligibility in noise
,”
Scand. Audiol.
11
(
2
),
79
87
.
14.
Hagerman
,
B.
, and
Olofsson
,
A.
(
2004
). “
A method to measure the effect of noise reduction algorithms using simultaneous speech and noise
,”
Acta Acust. Acust.
90
(
2
),
356
361
.
15.
Hoetink
,
A. E.
,
Körössy
,
L.
, and
Dreschler
,
W. A.
(
2009
). “
Classification of steady state gain reduction produced by amplitude modulation based noise reduction in digital hearing aids
,”
Int. J. Audiol.
48
(
7
),
444
455
.
16.
Holube
,
I.
,
Fredelake
,
S.
, and
Vlaming
,
M.
(
2010
). “
Development and analysis of an international speech test signal (ISTS)
,”
Int. J. Audiol.
49
(
12
),
891
903
.
17.
Houtgast
,
T.
, and
Steeneken
,
H.
(
1973
). “
The modulation transfer function in room acoustics as a predictor of speech intelligibility
,”
Acustica
28
(
1
),
66
73
.
18.
Hu
,
Y.
, and
Loizou
,
P.
(
2007
). “
A comparative intelligibility study of single-microphone noise reduction algorithms
,”
J. Acoust. Soc. Am.
122
(
32
),
1777
1786
.
19.
Humes
,
L. E.
,
Wilson
,
D. L.
,
Barlow
,
N. N.
, and
Garner
,
C.
(
2002
). “
Changes in hearing-aid benefit following 1 or 2 years of hearing-aid use by older adults
,”
J. Speech Lang. Hear. Res.
45
(
4
),
772
782
.
20.
IEC
(
2011
). 60268-16,
Sound System Equipment—Part 16: Objective Rating of Speech Intelligibility by Speech Transmission Index
, 4.0 ed. (
International Electrotechnical Commission
,
Geneva, Switzerland
).
21.
ISO
(
2005
). 389-7,
Acoustics—Reference Zero for the Calibration of Audiometric Equipment. Part 7: Reference Threshold of Hearing Under Free-Field and Diffuse-Field Listening Conditions
(
International Organisation for Standardisation
,
Geneva, Switzerland
).
22.
Jørgensen
,
S.
, and
Dau
,
T.
(
2011
). “
Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing
,”
J. Acoust. Soc. Am.
130
(
3
),
1475
1487
.
23.
Jørgensen
,
S.
,
Ewert
,
S. D.
, and
Dau
,
T.
(
2013
). “
A multi-resolution envelope-power based model for speech intelligibility
,”
J. Acoust. Soc. Am.
134
(
1
),
436
446
.
24.
Kates
,
J.
(
1987
). “
The short-time articulation index
,”
J. Rehabil. Res. Dev.
24
(
4
),
271
276
.
25.
Kates
,
J. M.
, and
Arehart
,
K. H.
(
2005
). “
Coherence and the speech intelligibility index
,”
J. Acoust. Soc. Am.
117
(
4
),
2224
2237
.
26.
Keidser
,
G.
,
Dillon
,
H.
,
Flax
,
M.
,
Ching
,
T.
, and
Brewer
,
S.
(
2011
). “
The NAL-NL2 prescription procedure
,”
Audiol. Res.
1
(
1S
),
e24
.
27.
Kochkin
,
S.
(
2010
). “
MarkeTrak VIII: Consumer satisfaction with hearing aids is slowly increasing
,”
Hear. J.
63
(
1
),
11
19
.
28.
Leijon
,
A.
,
Lindkvist
,
A.
,
Ringdahl
,
A.
, and
Israelsson
,
B.
(
1990
). “
Preferred hearing aid gain in everyday use after prescriptive fitting
,”
Ear Hear.
11
(
4
),
299
305
.
29.
Loizou
,
P. C.
(
2007
).
Speech Enhancement: Theory and Practice
(
CRC Press
,
Boca Raton, FL
),
608
pp.
30.
Loizou
,
P. C.
, and
Kim
,
G.
(
2011
). “
Reasons why current speech-enhancement algorithms do not improve speech intelligibility and suggested solutions
,”
IEEE Trans. Audio Speech Lang. Proc.
19
(
1
),
47
56
.
31.
Luts
,
H.
,
Eneman
,
K.
,
Wouters
,
J.
,
Schulte
,
M.
,
Vormann
,
M.
,
Büchler
,
M.
,
Dillier
,
N.
,
Houben
,
R.
,
Dreschler
,
W.
,
Froelich
,
M.
,
Puder
,
H.
,
Grimm
,
G.
,
Hohmann
,
V.
,
Leijon
,
A.
,
Lombard
,
A.
,
Mauler
,
D.
,
Moonen
,
M.
, and
Spriet
,
A.
(
2010
). “
Multicenter evaluation of signal enhancement algorithms for hearing aids
,”
J. Acoust. Soc. Am.
127
(
3
),
1491
1505
.
32.
Ma
,
J.
,
Hu
,
Y.
, and
Loizou
,
P. C.
(
2009
). “
Objective measures for predicting speech intelligibility in noisy conditions based on new bandimportance functions
,”
J. Acoust. Soc. Am.
125
(
5
),
3387
3405
.
33.
Meyer
,
R. M.
, and
Brand
,
T.
(
2013
). “
Comparison of different short-term speech intelligibility index procedures in fluctuating noise for listeners with normal and impaired hearing
,”
Acta Acust. Acust.
99
(
3
),
442
456
.
34.
Moore
,
B. C.
(
1996
). “
Perceptual consequences of cochlear hearing loss and their implications for the design of hearing aids
,”
Ear Hear.
17
(
2
),
133
161
.
35.
Pavlovic
,
C.
,
Studebaker
,
G.
, and
Sherbecoe
,
R.
(
1986
). “
An articulation index based procedure for predicting the speech recognition performance of hearing-impaired individuals
,”
J. Acoust. Soc. Am.
80
(
1
),
50
57
.
36.
Peeters
,
H.
,
Kuk
,
F.
,
Lau
,
C.-C.
, and
Keenan
,
D.
(
2009
). “
Subjective and objective evaluation of noise management algorithms
,”
J. Am. Acad. Audiol.
20
(
2
),
89
98
.
37.
Rhebergen
,
K.
,
Versfeld
,
N. J.
, and
Dreschler
,
W. A.
(
2006
). “
Extended speech intelligibility index for the prediction of the speech reception threshold in fluctuating noise
,”
J. Acoust. Soc. Am.
120
(
6
),
3988
3997
.
38.
Rhebergen
,
K. S.
,
Versfeld
,
N. J.
,
de Laat
,
J.
, and
Dreschler
,
W. A.
(
2010
). “
Modelling the speech reception threshold in non-stationary noise in hearing-impaired listeners as a function of level
,”
Int. J. Audiol.
49
(
11
),
856
865
.
39.
Smeds
,
K.
,
Bergman
,
N.
, and
Nyman
,
T.
(
2010a
), “
Noise reduction in modern hearing aids—Long-term and short-term measurements
,” in
Binaural Processing and Spatial Hearing
, edited by
J. M.
Buchholz
,
T.
Dau
,
J. C.
Dalsgaard
, and
T.
Poulsen
(
The Danavox Jubilee Foundation
,
Helsingør, Denmark
), pp.
445
452
.
40.
Smeds
,
K.
,
Wolters
,
F.
,
Nilsson
,
A.
,
Båsjö
,
S.
,
Hertzman
,
S.
, and
Leijon
,
A.
(
2010b
), “
Objective measures to quantify the perceptual effects of noise reduction in hearing aids
,” in
Proceedings of AES 38th International Conference
,
Piteå, Sweden
, pp.
101
108
.
41.
Smeds
,
K.
,
Wolters
,
F.
, and
Rung
,
M.
(
2014
). “
Estimation of signal-to-noise ratios in realistic sound scenarios
,”
J. Am. Acad. Audiol.
(in press).
42.
Steeneken
,
H.
, and
Houtgast
,
T.
(
1980
). “
A physical method of measuring speech-transmission quality
,”
J. Acoust. Soc. Am.
67
(
1
),
318
326
.
43.
Taal
,
C. H.
,
Hendriks
,
R. C.
,
Heusdens
,
R.
, and
Jensen
,
J.
(
2011a
), “
An algorithm for intelligibility prediction of time-frequency weighted noisy speech
,”
IEEE Trans. Audio Speech Lang. Proc.
19
(
7
),
2125
2136
.
44.
Taal
,
C. H.
,
Hendriks
,
R. C.
,
Heusdens
,
R.
, and
Jensen
,
J.
(
2011b
), “
An evaluation of objective measures for intelligibility prediction of time-frequency weighted noisy speech
,”
J. Acoust. Soc. Am.
130
(
5
),
3013
3027
.
45.
Wagener
,
K. C.
,
Hansen
,
M.
, and
Ludvigsen
,
C.
(
2008
). “
Recording and classification of the acoustic environment of hearing aid users
,”
J. Am. Acad. Audiol.
19
(
4
),
348
370
.
46.
Xia
,
R.
,
Li
,
J.
,
Akagi
,
M.
, and
Yan
,
Y.
(
2012
). “
Evaluation of objective intelligibility prediction measures for noise-reduced signals in mandarin
,” in
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
, pp.
4465
4468
.
You do not currently have access to this content.