Pressure distributions were obtained for 5°, 10°, and 20° convergent angles with a static physical model (M5) of the glottis. Measurements were made for minimal glottal diameters from d = 0.005–0.32 cm with a range of transglottal pressures of interest for phonation. Entrance loss coefficients were calculated at the glottal entrance for each minimal diameter and transglottal pressure to measure how far the flows in this region deviate from Bernoulli flow. Exit coefficients were also calculated to determine the presence and magnitude of pressure recovery near the glottal exit. The entrance loss coefficients for the three convergent angles vary from values near 2.3–3.4 for d = 0.005 cm to values near 0.6 for d = 0.32 cm. These coefficients extend the tables of entrance loss and exit coefficients obtained for the uniform glottis according to Fulcher, Scherer, and Powell [J. Acoust. Soc. Am. 129, 1548–1553 (2011)].

1.
J.
van den Berg
,
J. T.
Zantema
, and
P.
Doornenbal
, “
On the air resistance and the Bernoulli effect of the human larynx
,”
J. Acoust. Soc. Am.
29
,
626
631
(
1957
).
2.
K.
Ishizaka
and
M.
Matsudaira
, “
Fluid mechanical consideration of vocal cord vibration
,” Speech Communication Research Laboratory Monograph, No. 8. Santa Barbara, CA,
1972
, pp.
1
75
.
3.
K.
Ishizaka
and
J.
Flanagan
, “
Synthesis of voiced sounds from a two mass model of the vocal cords
,”
Bell Sys. Tech. J.
51
,
1233
1268
(
1972
).
4.
R.
Scherer
,
I.
Titze
, and
J.
Curtis
, “
Pressure-flow relationships in two models of the larynx having rectangular glottal shapes
,”
J. Acoust. Soc. Am.
73
,
668
676
(
1983
).
5.
J.
Gauffin
,
N.
Binh
,
T.
Ananthapadmanabha
, and
G.
Fant
, “
Glottal geometry and volume velocity wave form
,” in
Vocal Fold Physiology: Contemporary Research and Clinical Issues
, edited by
D.
Bless
and
J.
Abbs
(
College Hill
,
San Diego, CA
,
1983
), pp.
194
201
.
6.
R.
Scherer
and
I.
Titze
, “
Pressure-flow relationships in a model of the laryngeal airway with a diverging glottis
,” in
Vocal Fold Physiology: Contemporary Research and Clinical Issues
, edited by
D.
Bless
and
J.
Abbs
(
College Hill
,
San Diego, CA
,
1983
), pp.
179
193
.
7.
N.
Binh
and
J.
Gauffin
, “
Aerodynamic measurements in an enlarged static laryngeal model
,”
STL-QPSR
24
,
36
60
(
1983
).
8.
S.
Li
,
R.
Scherer
,
M.
Wan
, and
S.
Wang
, “
The effect of three-dimensional geometry on intraglottal quasi-steady flow distributions and their relationship with phonation
,”
Sci. China C Life Sci.
49
,
82
88
(
2006
).
9.
R.
Scherer
,
D.
Shinwari
,
K.
DeWitt
,
C.
Zhang
,
B.
Kucinschi
, and
A.
Afjeh
, “
Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees
,”
J. Acoust. Soc. Am.
109
,
1616
1630
(
2001
).
10.
R.
Scherer
,
D.
Shinwari
,
K.
DeWitt
,
C.
Zhang
,
B.
Kucinschi
, and
A.
Afjeh
, “
Intraglottal pressure distributions for a symmetric and oblique glottis with a uniform duct (L)
,”
J. Acoust. Soc. Am.
112
,
1253
1256
(
2002
).
11.
D.
Shinwari
,
R.
Scherer
,
K.
DeWitt
, and
A.
Afjeh
, “
Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees
,”
J. Acoust. Soc. Am.
113
,
487
497
(
2003
).
12.
L.
Fulcher
,
R.
Scherer
, and
T.
Powell
, “
Pressure distributions in a static physical model of the uniform glottis: Entrance and exit coefficients
,”
J. Acoust. Soc. Am.
129
,
1548
1553
(
2011
).
13.
I.
Titze
, “
The physics of small amplitude oscillation of the vocal folds
,”
J. Acoust. Soc. Am.
83
,
1536
1552
(
1988
).
14.
J.
Lucero
, “
Dynamics of the two-mass model of the vocal folds: Equilibria, bifurcations, and oscillation region
,”
J. Acoust. Soc. Am.
94
,
3104
3111
(
1993
).
15.
X.
Pelorson
,
A.
Hirschberg
,
R.
van Hassel
,
A.
Wijnands
, and
Y.
Auregan
, “
Theoretical and experimental study of quasisteady-flow separation within the glottis during phonation. Application to a modified two-mass model
,”
J. Acoust. Soc. Am.
96
,
3416
3431
(
1994
).
16.
B.
Story
and
I.
Titze
, “
Voice simulation with a body-cover model of the vocal folds
,”
J. Acoust. Soc. Am.
97
,
1249
1260
(
1995
).
17.
I.
Steinecke
and
H.
Herzel
, “
Bifurcations in an asymmetric vocal-fold model
,”
J. Acoust. Soc. Am.
97
,
1874
1884
(
1995
).
18.
N.
Lous
,
G.
Hofmans
,
R.
Veldhuis
, and
A.
Hirschberg
, “
A symmetrical two-mass vocal-fold model coupled to a vocal tract and trachea, with application to prosthesis design
,”
Acust. Acta Acust.
84
,
1135
1150
(
1998
).
19.
J.
Cisonni
,
A.
Van Hirtum
,
X.
Pelorson
, and
J.
Willems
, “
Theoretical and experimental validation of inverse quasi-one-dimensional steady and unsteady glottal flow models
,”
J. Acoust. Soc. Am.
124
,
535
545
(
2008
).
20.
J.
Lucero
and
L.
Koenig
, “
Simulations of the temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control
,”
J. Acoust. Soc. Am.
117
,
1362
1372
(
2005
).
21.
J.
Lucero
and
L.
Koenig
, “
Phonation thresholds as a function of laryngeal size in a two-mass model of the vocal folds (L)
,”
J. Acoust. Soc. Am.
118
,
2798
2801
(
2005
).
22.
N.
Ruty
,
X.
Pelorson
,
A.
Van Hirtum
,
I.
Lopez-Arteaga
, and
A.
Hirschberg
, “
An in vitro setup to test the relevance and accuracy of low-order vocal fold models
,”
J. Acoust. Soc. Am.
121
,
479
490
(
2007
).
23.
I.
Tokuda
,
J.
Horacek
,
J.
Svec
, and
H.
Herzel
, “
Comparison of biomechanical modeling of register transitions and voice instabilities with excised larynx experiments
,”
J. Acoust. Soc. Am.
122
,
519
531
(
2007
).
24.
Z.
Zhang
,
J.
Neubauer
, and
D.
Berry
, “
Physical mechanisms of phonation onset: A linear stability analysis of an aeroelastic continuum model of phonation
,”
J. Acoust. Soc. Am.
122
,
2279
2295
(
2007
).
25.
T.
Wurzbacher
,
M.
Doellinger
,
R.
Schwarz
,
U.
Hoppe
,
U.
Eysholdt
, and
J.
Lohscheller
, “
Spatiotemporal classification of vocal fold dynamics by a multimass model comprising time-dependent parameters
,”
J. Acoust. Soc. Am.
123
,
2324
2334
(
2008
).
26.
Z.
Zhang
, “
Characteristics of phonation onset in a two-layer vocal fold model
,”
J. Acoust. Soc. Am.
125
,
1091
1102
(
2009
).
27.
Z.
Zhang
, “
Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics
,”
J. Acoust. Soc. Am.
127
,
2554
2562
(
2010
).
28.
Z.
Zhang
, “
On the difference between negative damping and eigenmode synchronization as two phonation onset mechanisms
,”
J. Acoust. Soc. Am.
129
,
2163
2167
(
2011
).
29.
L.
Fulcher
and
R.
Scherer
, “
Phonation threshold pressure: Comparison of calculations and measurements taken with physical models of the vocal fold mucosa
,”
J. Acoust. Soc. Am.
130
,
1597
1605
(
2011
).
30.
I.
Titze
,
S.
Schmidt
, and
M.
Titze
, “
Phonation threshold pressure in a physical model of the vocal fold mucosa
,”
J. Acoust. Soc. Am.
97
,
3080
3084
(
1995
).
31.
R.
Chan
,
I.
Titze
, and
M.
Titze
, “
Further studies of phonation threshold pressure in a physical model of the vocal fold mucosa
,”
J. Acoust. Soc. Am.
101
,
3722
3727
(
1997
).
32.
R.
Chan
and
I.
Titze
, “
Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics
,”
J. Acoust. Soc. Am.
119
,
2351
2362
(
2006
).
33.
E.
Schoenerl
, “
The stroboscopic diagnosis of malignancies
,”
Akt. Probl. Phoniat. Logoped.
1
,
118
124
(
1960
).
34.

In Fig. 15 of Ref. 33 Schoenberl shows convergent angles as large as 26° in the opening phase of the glottal cycle.

35.
T.
Baer
, “
Investigation of phonation using excised larynges
,” Ph.D. Dissertation,
Mass Inst. Tech., Cambridge, MA
(
1975
).
36.
Baer finds convergent angles as large as 66° during the opening phase of the glottal cycle.
37.
M.
Hirano
, “
Structure and vibratory behavior of the vocal folds
,” in
Dynamic Aspects of Speech Production
, edited by
M.
Sawashima
and
F. S.
Cooper
(
University of Tokyo Press
,
Tokyo, Japan
,
1977
).
38.

In Fig. 9 of Ref. 37 Hirano shows convergent angles as large as 43° during the opening phase of the glottal cycle.

39.
S.
Saito
,
H.
Fukuda
,
Y.
Isogai
, and
H.
Ono
, “
X-ray stroboscopy
,” in
Vocal Fold Physiology
, edited by
K.
Stevens
and
M.
Hirano
(
University of Tokyo Press
,
Tokyo, Japan
,
1981
), Chap. 8.
40.
In Fig. 12 of Ref. 39 converging angles as large as 39° are shown during the opening phase of the glottal cycle.
41.
C.
Beavers
,
E.
Sparrow
, and
R.
Magnuson
, “
Experiments on hydrodynamically developing flow in rectangular ducts of arbitrary aspect ratio
,”
J. Heat Mass Transfer
13
,
689
702
(
1970
).
42.
R.
Street
,
G.
Watters
, and
J.
Vennard
,
Elementary Fluid Mechanics
, 7th ed. (
Wiley
,
New York
,
1996
), pp.
351
353
.
43.
F.
Durst
,
A.
Melling
, and
J.
Whitelaw
, “
Low Reynolds number flow over a plane symmetric sudden expansion
,”
J. Fluid. Mech.
64
,
111
128
(
1974
).
44.
L.
Fulcher
,
R.
Scherer
,
G.
Zhai
, and
Z.
Zhu
, “
Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis
,”
J. Voice
20
,
489
512
(
2006
).
You do not currently have access to this content.