This paper presents the general formulations for reconstructing the transient acoustic field generated by an arbitrary object with a uniformly distributed surface velocity in free space. These formulations are derived from the Kirchhoff–Helmholtz integral theory that correlates the transient acoustic pressure at any field point to those on the source surface. For a class of acoustic radiation problems involving an arbitrarily oscillating object with a uniformly distributed surface velocity, for example, a loudspeaker membrane, the normal surface velocity is frequency dependent but is spatially invariant. Accordingly, the surface acoustic pressure is expressible as the product of the surface velocity and the quantity that can be solved explicitly by using the Kirchhoff–Helmholtz integral equation. This surface acoustic pressure can be correlated to the field acoustic pressure using the Kirchhoff–Helmholtz integral formulation. Consequently, it is possible to use nearfield acoustic holography to reconstruct acoustic quantities in entire three-dimensional space based on a single set of acoustic pressure measurements taken in the near field of the target object. Examples of applying these formulations to reconstructing the transient acoustic pressure fields produced by various arbitrary objects are demonstrated.

1.
H.
Huang
, “
Transient interaction of plane acoustic waves with a spherical elastic shell
,”
J. Acoust. Soc. Am.
45
,
661
670
(
1969
).
2.
H.
Huang
, “
Transient response of two fluid-coupled spherical elastic shells to an incident pressure pulse
,”
J. Acoust. Soc. Am.
65
,
881
887
(
1979
).
3.
S. F.
Wu
, “
Transient sound radiation from impulsively accelerated bodies
,”
J. Acoust. Soc. Am.
94
,
542
553
(
1993
).
4.
H.-W.
Chen
and
P.
Stepanishen
, “
Acoustic transient radiation from fluid-loaded shells of revolution using time-dependent in vacuo eigenvector expansion
,”
J. Acoust. Soc. Am.
95
,
601
616
(
1994
).
5.
P.
Stepanishen
and
H.-W.
Chen
, “
Acoustic time-dependent loading on elastic shells of revolution using the internal source density and singular value decomposition method
,”
J. Acoust. Soc. Am.
99
,
1913
1923
(
1996
).
6.
L. L.
Thompson
and
R.
Huan
, “
Computation of transient radiation in semi-infinite regions based on exact nonreflecting boundary conditions and mixed time integration
,”
J. Acoust. Soc. Am.
106
,
3095
3108
(
1999
).
7.
J. A.
Hamilton
and
R. J.
Astley
, “
Exact solutions for transient spherical radiation
,”
J. Acoust. Soc. Am.
109
,
1848
1858
(
2001
).
8.
T. B.
Hansen
, “
Spherical expansions of time-domain acoustic fields: Application to near-field scanning
,”
J. Acoust. Soc. Am.
98
,
1204
1215
(
1995
).
9.
S. F.
Wu
,
H.-C.
Lu
, and
M.
Bajwa
, “
Reconstruction of transient acoustic radiation from a sphere
,”
J. Acoust. Soc. Am.
117
,
2065
2077
(
2005
).
10.
X.-Z.
Zhang
,
C.-C.
Bi
,
Y.-B.
Zhang
, and
L.
Xu
, “
Transient nearfield acoustic holography based on an interpolated time-domain equivalent source method
,”
J. Acoust. Soc. Am.
130
,
1430
1440
(
2011
).
11.
Z.
Wang
, “
Helmholtz equation-least-squares (HELS) method for inverse acoustic radiation problems
,” Ph.D. dissertation,
Wayne State University, Detroit, MI
,
1995
.
12.
M. R.
Bai
, “
Application of BEM (boundary element method)-based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries
,”
J. Acoust. Soc. Am.
92
,
533
549
(
1992
).
13.
B.-K.
Kim
and
J.-G.
Ih
, “
On the reconstruction of vibro-acoustic field over the surface enclosing an interior space using the boundary element method
,”
J. Acoust. Soc. Am.
100
,
3003
3016
(
1996
).
14.
Y.-K.
Kim
and
Y.-H.
Kim
, “
Holographic reconstruction of active sources and surface admittance in an enclosure
,”
J. Acoust. Soc. Am.
105
,
2377
2383
(
1999
).
15.
S.-C.
Kang
and
J.-G.
Ih
, “
Use of non-singular boundary integral formulation for reducing errors due to near-field measurements in the boundary element method based near-field acoustic holography
,”
J. Acoust. Soc. Am.
109
,
1320
1328
(
2001
).
16.
Z.
Wang
and
S. F.
Wu
, “
Helmholtz equation-least-squares method for reconstructing the acoustic pressure field
,”
J. Acoust. Soc. Am.
102
,
2020
2032
(
1997
).
17.
S. F.
Wu
, “
On reconstruction of acoustic pressure fields using the Helmholtz equation least squares method
,”
J. Acoust. Soc. Am.
107
,
2511
2522
(
2000
).
18.
S. F.
Wu
and
X.
Zhao
, “
Combined Helmholtz equation least squares (CHELS) method for reconstructing acoustic radiation
,”
J. Acoust. Soc. Am.
112
,
179
188
(
2002
).
19.
S. F.
Wu
, “
Hybrid nearfield acoustical holography
,”
J. Acoust. Soc. Am.
115
,
207
217
(
2004
).
20.
R.
Bracewell
, “
Heaviside's unit step function, H(x)
,” in
The Fourier Transform and Its Applications
, 3rd ed. (
McGraw-Hill
,
New York
,
2000
).
21.
A. D.
Pierce
,
Acoustics: An Introduction to Its Physical Principles And Applications
(
McGraw-Hill
,
New York
,
1981
), Chap. 4, pp.
181
184
.
22.
R. P.
Kanwal
,
Linear Integral Equations: Theory and Technique
, 2nd ed. (
Birkhäuser
,
Boston
,
1996
), p.
191
.
23.
M. C.
Junger
and
D.
Feit
,
Sound, Structures, and Their Interactions
(
MIT
,
Cambridge, MA
,
1972
), Chap. 14, pp.
403
430
.
24.
W. R.
LePage
,
Complex Variables and the Laplace Transform for Engineers
(
Dover
,
New York
,
1961
), Chap. 10, pp.
336
352
.
25.
R. R.
Craig
, Jr.
,
Structural Dynamics: An Introduction to Computer Methods
(
Wiley
,
New York
,
1981
), Chap. 6, pp.
123
127
.
26.
P. C.
Hansen
,
Rank-Deficient and Discrete Ill-Posed Problems
(
SIAM
,
Philadelphia, PA
,
1998
), Chap. 5, pp.
99
134
.
27.
E. G.
Williams
, “
Regularization methods for nearfield acoustical holography
,”
J. Acoust. Soc. Am.
110
,
1976
1988
(
2001
).
28.
S. F.
Wu
, “
Methods for reconstructing acoustic quantities based on acoustic pressure measurements
,”
J. Acoust. Soc. Am.
124
,
2680
2697
(
2008
).
29.
P. M.
Morse
and
K. U.
Ingard
,
Theoretical Acoustics
(
Princeton University Press
,
Princeton, NJ
,
1986
), Chap. 7, pp.
325
330
.
You do not currently have access to this content.