The need to measure the dynamic void fraction (the proportion of flowing bubbly liquid that is gas) is common across many power, processing and manufacturing industries. Many such pipelines and liquids are optically opaque, and work on margins that require a low cost solution that is not commensurate with the size of the challenge. Such a solution will therefore be a compromise, and in this paper costs are reduced by using a narrowband acoustic solution that cannot, on its own, contain enough information to characterize the void fraction in real time unambiguously. The ambiguity is reduced using likely estimates of the general shape of the bubble size distribution so that, with a single source-receiver pair attached to the outside of the pipe, the absolute gas content can be estimated. While the data that are required a priori (the general shape of the bubble size distribution) are not identical to the output of the inversion (the absolute void fraction of gas entrained as bubbles in the flow), the requirement for such a priori information could limit the usefulness of the technique in industry.

1.
G. T.
Yim
and
T. G.
Leighton
, “
Real-time on-line monitoring of ceramic ‘slip’ in pottery pipe-lines using ultrasound
,”
Ultrasonics
50
,
60
67
(
2010
).
2.
G. M.
Campbell
and
E.
Mougeot
, “
Creation and characterisation of aerated food products
,”
Trends Food Sci. Technol.
10
,
283
296
(
1999
).
3.
W.
Punurai
,
J.
Jarzynski
,
J.
Qu
,
K. E.
Kurtis
, and
L. J.
Jacobs
, “
Characterization of entrained air voids in cement paste with scattered ultrasound
,”
NDT & E Int.
39
,
514
524
(
2006
).
4.
T. G.
Leighton
and
P. R.
White
, “
Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions
,”
Proc. R. Soc. London, Ser. A
468
,
485
510
(
2012
).
5.
E. P.
Stride
and
C. C.
Coussios
, “
Cavitation and contrast: The use of bubbles in ultrasound imaging and therapy
,”
Proc. Inst. Mech. Eng., Part H
224
,
171
191
(
2010
).
6.
A. O.
Maksimov
and
T. G.
Leighton
, “
Pattern formation on the surface of a bubble driven by an acoustic field
,”
Proc. R. Soc. London, Ser. A
468
,
57
75
(
2012
).
7.
D. G.
Offin
,
P. R.
Birkin
, and
T. G.
Leighton
, “
Electrodeposition of copper in the presence of an acoustically excited gas bubble
,”
Electrochem. Commun.
9
,
1062
1068
(
2007
).
8.
D.
Felde
,
B.
Riemer
, and
M.
Wendel
, “
Development of a gas layer to mitigate cavitation damage in liquid mercury spallation targets
,”
J. Nucl. Mater.
377
,
155
161
(
2008
).
9.
P. V.
Chitnis
,
N. J.
Manzi
,
R. O.
Cleveland
,
R. A.
Roy
, and
R. G.
Holt
, “
Mitigation of damage to solid surfaces from the collapse of cavitation bubble clouds
,”
J. Fluids Eng.
132
,
051303
(
2010
).
10.
T. G.
Leighton
,
K.
Baik
, and
J.
Jiang
, “
The use of acoustic inversion to estimate the bubble size distribution in pipelines
,”
Proc. R. Soc. London, Ser. A
468
,
2461
2484
(
2012
).
11.
K. W.
Commander
and
A.
Prosperetti
, “
Linear pressure waves in bubbly liquids: Comparison between theory and experiments
,”
J. Acoust. Soc. Am.
85
,
732
746
(
1989
).
12.
K. W.
Commander
and
R. J.
McDonald
, “
Finite-element solution of the inverse problem in bubble swarm acoustics
,”
J. Acoust. Soc. Am.
89
,
592
597
(
1991
).
13.
R.
Duraiswami
,
S.
Prabhukumar
, and
G. L.
Chahine
, “
Bubble counting using an inverse acoustic scattering method
,”
J. Acoust. Soc. Am.
104
,
2699
2717
(
1998
).
14.
T. G.
Leighton
,
S. D.
Meers
, and
P. R.
White
, “
Propagation through nonlinear time dependent bubble clouds, and the estimation of bubble populations from measured acoustic characteristics
,”
Proc. R. Soc. London, Ser. A
460
,
2521
2550
(
2004
).
15.
T. G.
Leighton
and
G. B. N.
Robb
, “
Preliminary mapping of void fractions and sound speeds in gassy marine sediments from subbottom profiles
,”
J. Acoust. Soc. Am.
124
,
EL313
EL320
(
2008
).
16.
J. W. L.
Clarke
and
T. G.
Leighton
, “
A method for estimating time-dependent acoustic cross-sections of bubbles and bubble clouds prior to the steady state
,”
J. Acoust. Soc. Am.
107
,
1922
1929
(
2000
).
17.
J.
Cui
,
M. F.
Hamilton
,
P. S.
Wilson
, and
E. A.
Zabolotskaya
, “
Bubble pulsations between parallel plates
,”
J. Acoust. Soc. Am.
119
(
4
),
2067
2072
(
2006
).
18.
T. G.
Leighton
, “
The inertial terms in equations of motion for bubbles in tubular vessels or between plates
,”
J. Acoust. Soc. Am.
130
,
3333
3338
(
2011
).
19.
T. G.
Leighton
,
D. G.
Ramble
, and
A. D.
Phelps
, “
The detection of tethered and rising bubbles using multiple acoustic techniques
,”
J. Acoust. Soc. Am.
101
(
5
),
2626
2635
(
1997
).
20.
K.
Baik
,
J.
Jiang
, and
T. G.
Leighton
, “
Acoustic attenuation, phase and group velocities in liquid-filled pipes: Theory, experiment, and examples of water and mercury
,”
J. Acoust. Soc. Am.
128
,
2610
2624
(
2010
).
21.
J.
Jiang
,
K.
Baik
, and
T. G.
Leighton
, “
Acoustic attenuation, phase and group velocities in liquid-filled pipes II. Simulation for spallation neutron sources and planetary exploration
,”
J. Acoust. Soc. Am.
130
,
695
706
(
2011
).
22.
T. G.
Leighton
,
P. R.
White
, and
M. A.
Marsden
, “
Applications of one-dimensional bubbles to lithotripsy, and to diver response to low frequency sound
,”
Acta Acust.
3
(
6
),
517
529
(
1995
).
23.
T. G.
Leighton
,
W. L.
Ho
, and
R.
Flaxman
, “
Sonoluminescence from the unstable collapse of a conical bubble
,”
Ultrasonics
35
,
399
405
(
1997
).
24.
T. G.
Leighton
,
B. T.
Cox
, and
A. D.
Phelps
, “
The Rayleigh-like collapse of a conical bubble
,”
J. Acoust. Soc. Am.
107
(
1
),
130
142
(
2000
).
25.
T. G.
Leighton
,
D. G.
Ramble
,
A. D.
Phelps
,
C. L.
Morfey
, and
P. P.
Harris
, “
Acoustic detection of gas bubbles in a pipe
,”
Acust. Acta Acust.
84
,
801
814
(
1998
).
26.
T. G.
Leighton
,
P. R.
White
,
C. L.
Morfey
,
J. W. L.
Clarke
,
G. J.
Heald
,
H. A.
Dumbrell
, and
K. R.
Holland
, “
The effect of reverberation on the damping of bubbles
,”
J. Acoust. Soc. Am.
112
,
1366
1376
(
2002
).
27.
T. G.
Leighton
, “
What is ultrasound?
,”
Prog. Biophys. Mol. Biol.
93
,
3
83
(
2007
).
28.
T. G.
Leighton
,
J.
Jiang
, and
K.
Baik
, “
A TV demonstration of sound absorption connecting the space shuttle to submarines
,”
Acoust. Bull.
36
,
35
40
(
2011
).
29.
T. G.
Leighton
,
J.
Jiang
, and
K.
Baik
, “
Demonstration comparing sound wave attenuation inside pipes containing bubbly water and water droplet fog
,”
J. Acoust. Soc. Am.
131
(
3
),
2413
2421
(
2012
).
30.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops, and Particles
(
Academic Press
,
New York
,
1978
), pp.
171
173
.
31.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic Press
,
London
,
1994
), pp.
146
148
.
32.
K.
Baik
,
J.
Jiang
, and
T. G.
Leighton
, “
Acoustic attenuation, phase and group velocities in liquid-filled pipes III: Non-axisymmetric propagation and circumferential modes in lossless conditions
,”
J. Acoust. Soc. Am.
133
(
2
),
1225
1236
(
2013
).
33.
T. G.
Leighton
,
K.
Baik
, and
J.
Jiang
, “Theoretical background for a potential real time quantification of gas bubbles in pipelines,” ISVR Technical Report No. TR 335, The Institute of Sound and Vibration Research, University of Southampton, Southampton, UK, 2014.
34.
M. A.
Ainslie
and
T. G.
Leighton
, “
Review of theory for scattering and extinction cross-sections, damping factors and resonance frequencies of spherical gas bubbles
,”
J. Acoust. Soc. Am.
130
(
5
),
3184
3208
(
2011
).
35.
M. A.
Ainslie
and
T. G.
Leighton
, “
Near resonant bubble acoustic cross-section corrections, including examples from oceanography, volcanology, and biomedical ultrasound
,”
J. Acoust. Soc. Am.
126
(
5
),
2163
2175
(
2009
).
36.
T. G.
Leighton
,
D. C.
Finfer
,
P. R.
White
,
G.-H.
Chua
, and
J. K.
Dix
, “
Clutter suppression and classification using Twin Inverted Pulse Sonar (TWIPS)
,”
Proc. R. Soc. London, Ser. A
466
,
3453
3478
(
2010
).
37.
N. D.
Breitz
and
H.
Medwin
, “
Instrumentation for in situ acoustical measurements of bubble spectra under breaking waves
,”
J. Acoust. Soc. Am.
86
,
739
743
(
1989
).
38.
D. M.
Farmer
and
S.
Vagle
, “
Waveguide propagation of ambient sound in the ocean-surface bubble layer
,”
J. Acoust. Soc. Am.
86
,
1897
1908
(
1989
).
39.
G. B.
Deane
and
M. D.
Stokes
, “
Air entrainment processes and bubble size distributions in the surf zone
,”
J. Phys. Oceanogr.
29
,
1393
1403
(
1999
).
40.
A. D.
Phelps
and
T. G.
Leighton
, “
Oceanic bubble population measurements using a buoy-deployed combination frequency technique
,”
IEEE J. Oceanic Eng.
23
,
400
410
(
1998
).
41.
C.
Garrett
,
M.
Li
, and
D.
Farmer
, “
The connection between bubble size spectra and energy dissipation rates in the upper ocean
,”
J. Phys. Oceanogr.
30
,
2163
2171
(
2000
).
42.
D. M.
Farmer
,
S.
Vagle
, and
D.
Booth
, “
Reverberation effects in acoustical resonators used for bubble measurements
,”
J. Acoust. Soc. Am.
118
,
2954
2960
(
2005
).
43.
P. S.
Wilson
,
R. A.
Roy
, and
W. M.
Carey
, “
Phase speed and attenuation in bubbly liquids inferred from impedance measurements near the individual bubble resonance frequency
,”
J. Acoust. Soc. Am.
117
,
1895
1910
(
2005
).
44.
C.
Ormonde
,
P.
Chitnis
,
R. O.
Cleveland
,
R. G.
Holt
, and
R. A.
Roy
, “
A vertical acoustic waveguide for two-phase mercury-helium flow void fraction determination
,”
IMECE2008
, abstract No. 66791 (
American Society of Mechanical Engineers
,
New York
,
2008
), p.
196
.
45.
R. A.
Roy
,
C. E.
Ormonde
,
P. V.
Chitnis
,
R. O.
Cleveland
, and
R. G.
Holt
, “
An acoustic resonator for determining the void fraction of bubbly mercury flows
,”
J. Acoust. Soc. Am.
123
,
3559
(
2008
).
46.
T. G.
Leighton
,
K. J.
Fagan
, and
J. E.
Field
, “
Acoustic and photographic studies of injected bubbles
,”
Eur. J. Phys.
12
,
77
85
(
1991
).
47.
P. R.
Birkin
,
D. G.
Offin
,
P. F.
Joseph
, and
T. G.
Leighton
, “
Cavitation, shock waves and the invasive nature of sonoelectrochemistry
,”
J. Phys. Chem. B
109
,
16997
17005
(
2005
).
48.
P. S.
Wilson
,
A. H.
Reed
,
W. T.
Wood
, and
R. A.
Roy
, “
The low-frequency sound speed of fluid-like gas-bearing sediments
,”
J. Acoust. Soc. Am.
123
,
EL99
EL104
(
2008
).
49.
P. R.
Birkin
,
T. G.
Leighton
,
J. F.
Power
,
M. D.
Simpson
,
A. M. L.
Vincotte
, and
P.
Joseph
, “
Experimental and theoretical characterisation of sonochemical cells. Part 1. Cylindrical reactors and their use to calculate the speed of sound in aqueous solutions
,”
J. Phys. Chem. A
107
,
306
320
(
2003
).
You do not currently have access to this content.