Safety criteria for underwater low-frequency active sonar sounds produced during naval exercises are needed to protect harbor porpoise hearing. As a first step toward defining criteria, a porpoise was exposed to sequences consisting of series of 1-s, 1–2 kHz sonar down-sweeps without harmonics (as fatiguing noise) at various combinations of average received sound pressure levels (SPLs; 144–179 dB re 1 μPa), exposure durations (1.9–240 min), and duty cycles (5%–100%). Hearing thresholds were determined for a narrow-band frequency-swept sine wave centered at 1.5 kHz before exposure to the fatiguing noise, and at 1–4, 4–8, 8–12, 48, 96, 144, and 1400 min after exposure, to quantify temporary threshold shifts (TTSs) and recovery of hearing. Results show that the inter-pulse interval of the fatiguing noise is an important parameter in determining the magnitude of noise-induced TTS. For the reported range of exposure combinations (duration and SPL), the energy of the exposure (i.e., cumulative sound exposure level; SELcum) can be used to predict the induced TTS, if the inter-pulse interval is known. Exposures with equal SELcum but with different inter-pulse intervals do not result in the same induced TTS.

1.
Ainslie
,
M. A.
(
2010
).
Principles of Sonar Performance
(
Springer-Praxis
,
Chinchester, UK
),
283
pp.
2.
ANSI
(
1994
). S1.1 1994,
American National Standard Acoustical Terminology
(
Acoustical Society of America
,
New York)
, No. R2004,
58
pp.
3.
Bjorge
,
A.
, and
Tolley
,
K. A.
(
2008
). “
Harbor porpoise Phocoena phocoena
,” in
Encyclopedia of Marine Mammals
, edited by
W. F.
Perrin
,
B.
Wursig
, and
J. G. M.
Thewissen
(
Academic
,
New York
), pp.
530
532
.
4.
Carder
,
H. M.
, and
Miller
,
J. D.
(
1972
). “
Temporary threshold shifts from prolonged exposure to noise
,”
J. Speech Hear. Res.
15
,
603
623
.
5.
Cornsweet
,
T. N.
(
1962
). “
The staircase method in psychophysics
,”
J. Acoust. Soc. Am.
75
,
485
491
.
6.
Finneran
,
J. J.
,
Carder
,
D. A.
,
Schlundt
,
C. E.
, and
Dear
,
R. L.
(
2010
). “
Temporary threshold shift in a bottlenose dolphin (Tursiops truncatus) exposed to intermitted tones
,”
J. Acoust. Soc. Am.
127
,
3267
3272
.
7.
Finneran
,
J. J.
,
Carder
,
D. A.
,
Schlundt
,
C. E.
, and
Ridgway
,
S. H.
(
2005
). “
Temporary threshold shift in bottlenose dolphins (Tursiops truncatus) exposed to mid-frequency tones
.”
J. Acoust. Soc. Am.
118
,
2696
2705
.
8.
Finneran
,
J. J.
, and
Schlundt
,
C. E.
(
2010
). “
Frequency-dependent and longitudinal changes in noise-induced hearing loss in a bottlenose dolphin (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
128
,
567
570
.
9.
Finnenran
,
J. J.
, and
Schlundt
,
C. E.
(
2013
). “
Effects of fatiguing tone frequency on temporary threshold shift in bottlenose dolphins (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
133
,
1819
1826
.
10.
Finneran
,
J. J.
,
Schlundt
,
C. E.
,
Branstetter
,
B.
, and
Dear
,
R. L.
(
2007
). “
Assessing temporary threshold shift in a bottlenose dolphin (Tursiops truncatus) using multiple simultaneous auditory evoked potentials
,”
J. Acoust. Soc. Am.
122
,
1249
1264
.
11.
Finneran
,
J. J.
,
Schlundt
,
C. E.
,
Carder
,
D. A.
,
Clark
,
J. A.
,
Young
,
J. A.
,
Gaspin
,
J. B.
, and
Ridgway
,
S. H.
(
2000
). “
Auditory and behavioral responses of bottlenose dolphins (Tursiops truncatus) and a beluga (Delphinapterus leucas) to impulsive sounds resembling distant signatures of underwater explosions
,”
J. Acoust. Soc. Am.
108
,
417
431
.
12.
Finneran
,
J. J.
,
Schlundt
,
C. E.
,
Dear
,
R.
,
Carder
,
D. A.
, and
Ridgway
,
S. H.
(
2002
). “
Temporary shift in masked hearing thresholds in odontocetes after exposure to single under-water impulses from a seismic watergun
,”
J. Acoust. Soc. Am.
111
,
2929
2940
.
13.
Henserson
,
D.
,
Subramaniam
,
M.
,
Graton
,
M. A.
, and
Saunders
,
S. S.
(
1991
). “
Impact of noise: The importance of level, duration, and repetition rate
,”
J. Acoust. Soc. Am.
89
,
1350
1357
.
14.
Kastelein
,
R. A.
,
Bunskoek
,
P.
,
Hagedoorn
,
M.
,
Au
,
W. W. L.
, and
de Haan
,
D.
(
2002
). “
Audiogram of a harbor porpoise (Phocoena phocoena) measured with narrow-band frequency-modulated signals
,”
J. Acoust. Soc. Am.
112
,
334
344
.
15.
Kastelein
,
R. A.
,
Gransier
,
R.
, and
Hoek
,
L.
(
2013a
). “
Comparative temporary threshold shifts in a harbor porpoise and harbor seal, and severe shift in a seal
,”
J. Acoust. Soc. Am.
134
,
13
16
.
16.
Kastelein
,
R. A.
,
Gransier
,
R.
Hoek
,
L.
,
Macleod
,
A.
, and
Terhune
,
J. M.
(
2012a
). “
Hearing threshold shifts and recovery in harbor seals (Phoca vitulina) after octave-band noise exposure at 4 kHz
,”
J. Acoust. Soc. Am.
132
,
2745
2761
.
17.
Kastelein
,
R. A.
,
Gransier
,
R.
,
Hoek
,
L.
, and
Olthuis
,
J.
(
2012b
). “
Temporary threshold shifts and recovery in a harbor porpoise (Phocoena phocoena) after octave-band noise at 4 kHz
,”
J. Acoust. Soc. Am.
132
,
3525
3537
.
18.
Kastelein
,
R. A.
,
Gransier
,
R.
,
Hoek
,
L.
, and
Rambags
,
M.
(
2013b
). “
Hearing frequency thresholds of a harbor porpoise (Phocoena phocoena) temporarily affected by a continuous 1.5 kHz tone
,”
J. Acoust. Soc. Am.
134
,
2286
2292
.
19.
Kastelein
,
R. A.
,
Hoek
,
L.
, and
de Jong
,
C. A. F.
(
2011
). “
Hearing thresholds of a harbor porpoise (Phocoena phocoena) for sweeps (1–2 kHz and 6–7 kHz bands) mimicking naval sonar signals
,”
J. Acoust. Soc. Am.
129
,
1
8
.
21.
Kastelein
,
R. A.
,
Hoek
,
L.
,
de Jong
,
C. A. F.
, and
Wensveen
,
P. J.
(
2010
). “
The effect of signal duration on the underwater detection thresholds of a harbor porpoise (Phocoena phocoena) for single frequency-modulated tonal signals between 0.25 and 160 kHz
,”
J. Acoust. Soc. Am.
128
,
3211
3222
.
22.
Kastelein
,
R. A.
,
Steen
,
N.
,
Gransier
,
R.
,
Wensveen
,
P. J.
, and
de Jong
,
C. A. F.
(
2012c
). “
Threshold received sound pressure levels of single 1–2 kHz and 6–7 kHz up-sweeps and down-sweeps causing startle responses in a harbor porpoise (Phocoena phocoena)
,”
J. Acoust. Soc. Am.
131
,
2325
2333
.
25.
Lucke
,
K.
,
Siebert
,
U.
,
Lepper
,
P. A.
, and
Blanchet
,
M.
(
2009
). “
Temporary shift in masked hearing thresholds in a harbor porpoise (Phocoena phocoena) after exposure to seismic airgun stimuli
,”
J. Acoust Soc. Am.
125
,
4060
4070
.
26.
Luts
,
H.
,
van Dun
,
B.
,
Alaerts
,
J.
, and
Wouters
,
J.
(
2008
). “
The influence of the detection paradigm in recording auditory steady-state responses
,”
Ear Hear.
29
,
638
650
.
27.
Madsen
,
P. T.
(
2005
). “
Marine mammals and noise: Problems with root mean square sound pressure levels for transients
,”
J. Acoust. Soc. Am.
117
,
3952
3957
.
28.
Melnick
,
W.
(
1991
). “
Human temporary threshold shifts (TTS) and damage risk
,”
J. Acoust. Soc. Am.
90
,
147
154
.
29.
Mills
,
J. H.
,
Gilbert
,
R. M.
, and
Adkins
,
W. Y.
(
1979
). “
Temporary threshold shift in humans exposed to octave bands of noise for 16 to 24 hours
,”
J. Acoust. Soc. Am.
65
,
1238
1248
.
30.
Mooney
,
T. A.
,
Nachtigall
,
P. E.
,
Breese
,
M.
,
Vlachos
,
M.
, and
Au
,
W. W. L.
(
2009a
). “
Predicting temporary threshold shift in a bottlenose dolphin (Tursiops truncatus): The effects of noise level and duration
,”
J. Acoust. Soc. Am.
125
,
1816
1826
.
31.
Mooney
,
T. A.
,
Nachtigall
,
P. E.
, and
Vlachos
,
S.
(
2009b
). “
Sonar-induced temporary hearing loss in dolphins
,”
Biol. Lett.
5
,
565
567
.
32.
Nachtigall
,
P. E.
,
Pawloski
,
J. L.
, and
Au
,
W. W. L.
(
2003
). “
Temporary threshold shifts and recovery following noise exposure in the Atlantic bottlenosed dolphin (Tursiops truncatus)
,”
J. Acoust. Soc. Am.
113
,
3425
3429
.
33.
Nachtigall
,
P. E.
,
Supin
,
A. Ya.
,
Pawloski
,
J.
, and
Au
,
W. W. L.
(
2004
). “
Temporary threshold shifts after noise exposure in the bottlenose dolphin (Tursiops truncatus) measured using evoked auditory potentials
,”
Mar. Mamm. Sci.
20
,
673
687
.
34.
Popov
,
V. V.
,
Supin
,
A. Ya.
,
Rozhnov
,
V. V.
Nechaev
,
D. I.
,
Sysuyeva
,
E. V.
,
Klishin
,
V. O.
,
Pletenko
,
M. G.
, and
Tarakanov
,
M. B.
(
2013
). “
Hearing threshold shifts and recovery after noise exposure in beluga whales, Delphinapterus leucas
,”
J. Exp. Biol.
216
,
1587
1596
.
35.
Popov
,
V. V.
,
Supin
,
A. Ya.
,
Wang
,
D.
,
Wang
,
K.
,
Dong
,
L.
, and
Wang
,
S.
(
2011
). “
Noise-induced temporary threshold shift and recovery in Yangtze finless porpoise Neophocaena phocaenoides asiaeorientalis
,”
J. Acoust. Soc. Am.
130
,
574
584
.
36.
Price
,
G. R.
(
1980
). “
Implications of a critical level in the ear for assessment of noise hazard at high intensities
,”
J. Acoust. Soc. Am.
69
,
171
177
.
38.
Schlundt
,
C. E.
,
Finneran
,
J. J.
,
Carder
,
D. A.
, and
Ridgway
,
S. H.
(
2000
). “
Temporary shift in masked hearing thresholds of bottlenose dolphins, Tursiops truncatus, and white whales, Delphinapterus leucas, after exposure to intense tones
,”
J. Acoust. Soc. Am.
107
,
3496
3508
.
39.
Southall
,
B. L.
,
Bowles
,
A. E.
,
Ellison
,
W. T.
,
Finneran
,
J. J.
,
Gentry
,
R. L.
,
Greene
,
C. R.
, Jr.
,
Kastak
,
D.
,
Ketten
,
D. R.
,
Miller
,
J. H.
,
Nachtigall
,
P. E.
,
Richardson
,
W. J.
,
Thomas
,
J. A.
, and
Tyack
,
P. L.
(
2007
). “
Marine mammal noise exposure criteria: Initial scientific recommendations
,”
Aquat. Mamm.
33
,
411
521
.
40.
Syka
,
J.
, and
Popelár
,
J.
(
1980
). “
Hearing threshold shifts from prolonged exposure to noise in guinea pigs
,”
Hear. Res.
3
,
205
213
.
41.
Yost
,
W. A.
(
2007
).
Fundamentals of Hearing: An Introduction
(
Academic
,
New York)
,
326
pp.
42.
Zar
,
J. H.
(
1999
).
Biostatistical Analysis
(
Prentice-Hall
,
Upper Saddle River, NJ)
,
718
pp.
You do not currently have access to this content.