This paper considers a class of low-order, range-dependent propagation models obtained from the normal mode decomposition of infrasounds in complex atmospheres. The classical normal mode method requires calculating eigenvalues for large matrices making the computation expensive even though some modes have little influence on the numerically obtained results. By decomposing atmospheric perturbations into a wavelet basis, it is shown that the most sensitive eigenvalues provide the best reduced model for infrasound propagation. These eigenvalues lie on specific curves in the complex plane that can be directly deduced from atmospheric data through a WKB approach. The computation cost can be reduced by computing the invariant subspace associated with the most sensitive eigenvalues. The reduction method is illustrated in the case of the Fukushima explosion (12 March 2011). The implicitly restarted Arnoldi algorithm is used to compute the three most sensitive modes, and the correct tropospheric arrival is found with a cost of 2% of the total run time. The cost can be further reduced by using a stationary phase technique. Finally, it is shown that adding uncertainties triggers a stratospheric arrival even though the classical criteria, based on the ratio of stratospheric sound speed to that at ground level, is not satisfied.

1.
D. P.
Drob
,
J. T.
Emmert
,
G.
Crowley
,
J. M.
Picone
,
G. G.
Shepherd
,
W.
Skinner
,
P.
Hays
,
R. J.
Niciejewski
,
M.
Larsen
,
C. Y.
She
,
J. W.
Meriwether
,
G.
Hernandez
,
M. J.
Jarvis
,
D. P.
Sipler
,
C. A.
Tepley
,
M. S.
O'Brien
,
J. R.
Bowman
,
Q.
Wu
,
Y.
Murayama
,
S.
Kawamura
,
I. M.
Reid
, and
R. A.
Vincent
, “
An empirical model of the Earth's horizontal wind fields: HWM07
,”
J. Geophys. Res.
113
,
A12304
, doi: (
2008
).
2.
A. E.
Hedin
,
E. L.
Fleming
,
A. H.
Manson
,
F. J.
Schmidlin
,
S. K.
Avery
,
R. R.
Clark
,
S. J.
Franke
,
G. J.
Fraser
,
T.
Tsuda
,
F.
Vial
, and
R. A.
Vincent
, “
Empirical wind model for the upper, middle and lower atmosphere
,”
J. Atmos. Terrestrial Phys.
58
(
13
),
1421
1447
(
1996
).
3.
S. N.
Kulichkov
,
I. P.
Chunchuzov
, and
O. I.
Popov
, “
Simulating the influence of an atmospheric fine inhomogeneous structure on long-range propagation of pulsed acoustic signals
,”
Izv., Atmos. Ocean. Phys.
46
(
1
),
60
68
(
2010
).
4.
I. P.
Chunchuzov
,
S. N.
Kulichkov
,
O. E.
Popov
,
R.
Waxler
, and
J.
Assink
, “
Infrasound scattering from atmospheric anisotropic inhomogeneities
,”
Izv. Atmos. Ocean. Phys.
47
(
5
),
540
557
(
2011
).
5.
M. A. H.
Hedlin
,
C. D.
de Groot-Hedlin
, and
D.
Drob
, “
A study of infrasound propagation using dense seismic network recordings of surface explosions
,”
Bull. Seismolog. Soc. Am.
102
,
1927
1937
(
2012
).
6.
D. P.
Drob
,
D.
Broutman
,
M. A.
Hedlin
,
N. W.
Winslow
, and
R. G.
Gibson
, “
A method for specifying atmospheric gravity wavefields for long-range infrasound propagation calculations
,”
J. Geophys. Res.
118
(
10
),
3933
3943
, doi: (
2013
).
7.
R.
Waxler
,
K. E.
Gilbert
, and
C. L.
Talmadge
, “
A theoretical treatment of the long range propagation of impulsive signals under strongly ducted nocturnal conditions
,”
J. Acoust. Soc. Am.
124
(
5
),
2742
(
2008
).
8.
R.
Waxler
, “
A vertical eigenfunction expansion for the propagation of sound in a downward-refracting atmosphere over a complex impedance plane
,”
J. Acoust. Soc. Am.
112
(
6
),
2540
2552
(
2002
).
9.
A. C.
Antoulas
,
D. C.
Sorensen
, and
S.
Gugercin
, “
A survey of model reduction methods for large-scale systems
,”
Contemp. Math.
280
,
193
219
(
2001
).
10.
C. W.
Rowley
, “
Model reduction for fluids using balanced proper orthogonal decomposition
,”
Int. J. Bifurcation Chaos
15
(
3
),
997
1013
(
2005
).
11.
J.
Delville
,
L.
Ukeiley
,
L.
Cordier
,
J. P.
Bonnet
, and
M.
Glauser
, “
Examination of large-scale structures in a turbulent plane mixing layer. Part 1. Proper orthogonal decomposition
,”
J. Fluid Mech.
391
,
91
122
(
1999
).
12.
B.
Galletti
,
C. H.
Bruneau
,
L.
Zannetti
, and
A.
Iollo
, “
Low-order modelling of laminar flow regimes past a confined square cylinder
,”
J. Fluid Mech.
503
,
161
170
(
2004
).
13.
A.
Hay
,
J. T.
Borggaard
, and
D.
Pelletier
, “
Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition
,”
J. Fluid Mech.
629
,
41
72
(
2009
).
14.
A.
Barbagallo
,
D.
Sipp
, and
P. J.
Schmid
, “
Input-output measures for model reduction and closed-loop control: Application to global modes
,”
J. Fluid Mech.
685
,
23
53
(
2011
).
15.
E.
Akervik
,
J.
Hœpffner
,
U.
Ehrenstein
, and
D. S.
Henningson
, “
Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes
,”
J. Fluid Mech.
579
,
305
314
(
2007
).
16.
Z.
Bai
, “
Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems
,”
Appl. Numerical Math.
43
,
9
44
(
2002
).
17.
R.
Srinivasan Puri
,
D.
Morrey
,
A. J.
Bell
,
J. F.
Durodola
,
E. B.
Rudnyi
, and
J. G.
Korvink
, “
Reduced order fully coupled structural acoustic analysis via implicit moment matching
,”
Appl. Math. Model.
33
(
11
),
4097
4119
(
2009
).
18.
D. S.
Watkins
,
The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods
(
SIAM
,
Philadelphia
,
2007
), pp.
351
421
.
19.
B.
Salimbahrami
and
B.
Lohmann
, “
Order reduction of large scale second-order systems using Krylov subspace methods
,”
Linear Algebra Appl.
415
(
2–3
),
385
405
(
2006
).
20.
C.
Millet
,
J. C.
Robinet
, and
C.
Roblin
, “
On using computational aeroacoustics for long-range propagation of infrasounds in realistic atmospheres
,”
Geophys. Res. Lett.
34
(
14
),
L14814
, doi: (
2007
).
21.
M.
Bertin
,
C.
Millet
,
D.
Bouche
, and
J.-C.
Robinet
, “
The role of atmospheric uncertainties on long range propagation of infrasounds
,” AIAA Paper
2012
3346
(
2012
).
22.
C. M.
Bender
and
S. A.
Orszag
,
Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory
(
Springer-Verlag
,
New York
,
1999
), pp.
504
533
.
23.
J. W.
Strutt
(Baron Rayleigh),
The Theory of Sound
, 2nd ed., revised and enlarged (
MacMillan
,
London
,
1896
), Vol.
2
, p.
132
.
24.
F. B.
Jensen
,
W. A.
Kuperman
,
M. B.
Porter
, and
H.
Schmidt
,
Computational Ocean Acoustics
(
AIP Press
,
New York
,
1994
), pp.
257
322
.
25.
M.
Abramowitz
and
I.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1964
), pp.
358
433
.
26.
R.
Waxler
, “
On the use of modal expansions to model broadband propagation in the nighttime boundary layer and other downward refracting atmospheres over lossy ground planes
,”
J. Acoust. Soc. Am.
113
(
4
),
2313
(
2003
).
27.
J.
Candelier
,
S.
Le Dizès
, and
C.
Millet
, “
Shear instability in a stratified fluid when shear and stratification are not aligned
,”
J. Fluid Mech.
685
,
191
201
(
2011
).
28.
J.
Candelier
,
S.
Le Dizès
, and
C.
Millet
, “
Inviscid instability of a stably stratified compressible boundary layer on an inclined surface
,”
J. Fluid Mech.
694
,
524
539
(
2012
).
29.
T. J.
Bridges
and
P. J.
Morris
, “
Differential eigenvalue problems in which the parameter appears nonlinearly
,”
J. Comput. Phys.
55
(
3
),
437
460
(
1984
).
30.
G. K.
Batchelor
,
H. K.
Moffatt
, and
M. G.
Worster
,
Perspectives in Fluid Dynamics: A Collective Introduction to Current Research
(
Cambridge University Press
,
Cambridge, UK
,
2000
), Chap. 4.
31.
A. D.
Pierce
, “
Extension of the method of normal modes to sound propagation in an almost stratified medium
,”
J. Acoust. Soc. Am.
37
(
1
),
19
27
(
1965
).
32.
T.
Kato
,
Perturbation Theory for Linear Operators
(
Springer-Verlag
,
Berlin
,
1995
), p.
619
.
33.
L. N.
Trefethen
and
D.
Bau
,
Numerical Linear Algebra
(
SIAM
,
Philadelphia
,
1997
), p.
258
.
34.
S. G.
Mallat
, “
Multiresolution representations and wavelets
,” Dissertations available from ProQuest, Paper AAI8824767 (
1988
).
35.
I.
Daubechies
, “
Orthonormal bases of compactly supported wavelets
,”
Comm. Pure Appl. Math.
41
(
7
),
909
996
(
1988
).
36.
R. B.
Lehoucq
, “
Implicitly restarted Arnoldi methods and subspace iteration
,”
SIAM J. Matrix Anal. Appl.
23
(
2
),
551
562
(
2001
).
37.
K.
Meerbergen
and
R. B.
Morgan
, “
Arnoldi method with inexact Cayley transform
,” in
Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide
, edited by
Z.
Bai
,
J.
Demmel
,
J.
Dongarra
,
A.
Ruhe
, and
H.
van der Vorst
(
SIAM
,
Philadelphia
,
2000
), Sec. 11.2.3, pp.
342
343
.
38.
C. A.
Beattie
,
M.
Embree
, and
J.
Rossi
, “
Convergence of restarted Krylov subspaces to invariant subspaces
,”
SIAM J. Matrix Anal. Appl.
25
,
1074
1109
(
2004
).
39.
C. A.
Beattie
,
M.
Embree
, and
D. C.
Sorensen
, “
Convergence of polynomial restart Krylov methods for eigenvalue computations
,”
SIAM Rev.
47
(
3
),
492
515
(
2005
).
You do not currently have access to this content.