Understanding the physics governing the interaction of sound with targets in an underwater environment is essential to improving existing target detection and classification algorithms. To illustrate techniques for identifying the key physics, an examination is made of the acoustic scattering from a water-filled cylindrical shell. Experiments were conducted that measured the acoustic scattering from a water-filled cylindrical shell in the free field, as well as proud on a sand-water interface. Two modeling techniques are employed to examine these acoustic scattering measurements. The first is a hybrid 2-D/3-D finite element (FE) model, whereby the scattering in close proximity to the target is handled via a 2-D axisymmetric FE model, and the subsequent 3-D propagation to the far field is determined via a Helmholtz integral. This model is characterized by the decomposition of the fluid pressure and its derivative in a series of azimuthal Fourier modes. The second is an analytical solution for an infinitely long cylindrical shell, coupled with a simple approximation that converts the results to an analogous finite length form function. Examining these model results on a mode-by-mode basis offers easy visualization of the mode dynamics and helps distinguish the different physics driving the target response.

1.
J. R.
La Follett
,
K. L.
Williams
, and
P. L.
Marston
, “
Boundary effects on backscattering by a solid aluminum cylinder: Experiment and finite element model comparisons
,”
J. Acoust. Soc. Am.
130
,
669
672
(
2011
).
2.
K. L.
Williams
,
S. G.
Kargl
,
E. I.
Thorsos
,
D. S.
Burnett
,
J. L.
Lopes
,
M.
Zampolli
, and
P. L.
Marston
, “
Acoustic scattering from an aluminum cylinder in contact with a sand sediment: Measurements, modeling, and interpretation
,”
J. Acoust. Soc. Am.
127
,
3356
3371
(
2010
).
3.
M.
Zampolli
,
A. L.
Espana
,
K. L.
Williams
,
S. G.
Kargl
,
E. I.
Thorsos
,
J. L.
Lopes
,
J. L.
Kennedy
, and
P. L.
Marston
, “
Low- to mid-frequency scattering from elastic objects on a sand sea floor: Simulation of frequency and aspect dependent structural echoes
,”
J. Comput. Acoust.
20
(
2
),
1240007
(
2012
).
4.
M.
Zampolli
,
A.
Tesei
,
G.
Canepa
, and
O. A.
Godin
, “
Computing the far field scattered or radiated by objects inside layered fluid media using approximate Green's functions
,”
J. Acoust. Soc. Am.
123
,
4051
4058
(
2008
).
5.
A. D.
Pierce
,
Acoustics: An Introduction to Its Physical Principles and Applications
(
McGraw-Hill
,
New York
,
1981
), Chap. 4, pp.
180
183
.
6.
M.
Zampolli
,
A.
Tesei
,
F. B.
Jensen
,
N.
Malm
, and
J. B.
Blottman
, “
A computationally efficient finite element model with perfectly matched layers applied to scattering from axially symmetric objects
,”
J. Acoust. Soc. Am.
122
,
1472
1485
(
2007
).
7.
F.
Leon
,
F.
Lecroq
,
D.
Decultot
, and
G.
Maze
, “
Scattering of an obliquely incident acoustic wave by an infinite hollow cylindrical shell
,”
J. Acoust. Soc. Am.
91
,
1388
1397
(
1992
).
8.
P. L.
Marston
, “
Approximate meridional leaky ray amplitudes for tilted cylinders: End-backscattering enhancements and comparisons with exact theory for infinite solid cylinders
,”
J. Acoust. Soc. Am.
102
,
358
369
(
1997
).
9.
L.
Flax
,
V. K.
Varadan
, and
V. V.
Varadan
, “
Scattering of an obliquely incident acoustic wave by an infinite cylinder
,”
J. Acoust. Soc. Am.
68
,
1832
1835
(
1980
).
10.
A. L.
Fetter
and
J. D.
Walecka
,
Theoretical Mechanics of Particles and Continua
(
Dover
,
New York
,
1980
), Chap. 9, pp.
336
339
.
11.
P. L.
Marston
, “
Geometrical and catastrophe optics methods in scattering
,” in
Physical Acoustics
, edited by
A. D.
Pierce
and
R. N.
Thurston
(
Academic Press
,
Boston
,
1992
), Vol.
21
, pp.
1
234
.
12.
T. K.
Stanton
, “
Sound scattering by cylinders of finite length. I. Fluid cylinders
,”
J. Acoust. Soc. Am.
83
,
55
63
(
1988
).
13.
S. F.
Morse
and
P. L.
Marston
, “
Meridional ray contributions to scattering by tilted cylindrical shells above the coincidence frequency: Ray theory and computations
,”
J. Acoust. Soc. Am.
106
,
2595
2600
(
1999
).
14.
S. F.
Morse
,
P. L.
Marston
, and
G.
Kaduchak
, “
High-frequency backscattering enhancements by thick finite cylindrical shells in water at oblique incidence: Experiments, interpretation, and calculations
,”
J. Acoust. Soc. Am.
103
,
785
794
(
1998
).
15.
F. J.
Blonigen
and
P. L.
Marston
, “
Leaky helical flexural wave scattering contributions from tilted cylindrical shells: Ray theory and wave-vector anisotropy
,”
J. Acoust. Soc. Am.
110
,
1764
1769
(
2001
).
16.
K. F.
Graff
,
Wave Motion in Elastic Solids
(
Dover
,
New York
,
1975
), Sec. 8.1.5, pp.
446
448
.
17.
M. L.
Rumerman
, “
Contribution of membrane wave reradiation to scattering from finite cylindrical steel shells in water
,”
J. Acoust. Soc. Am.
93
,
55
65
(
1992
).
18.
R. J.
Urick
,
Principles of Underwater Sound for Engineers
, 2nd ed. (
McGraw-Hill
,
New York
,
1975
), Chap. 9, pp.
274
275
.
You do not currently have access to this content.