Conventional acoustical methods for measuring the permeability or flow resistivity of a porous material require a priori estimation of the porosity. In this work, an acoustical method is presented in which a simplified expression (independent of both the frequency and porosity) for the transmitted waves at the Darcy's regime (low frequency range) is derived, and used for the inverse determination of both the viscous static permeability (or flow resistivity) and the thickness of air-saturated porous materials. The inverse problem is solved based on the least-square numerical method using experimental transmitted waves in time domain. Tests are performed using industrial plastic foams. Experimental and numerical validation results of this method are presented, which show the advantage of measuring the viscous permeability and thickness of a porous slab, without the required prior knowledge of the porosity, but by simply using the transmitted waves.

1.
J. F.
Allard
,
Propagation of Sound in Porous Media Modelling. Sound Absorbing Materials
(
Elsevier
,
London, UK
,
1993
), pp.
1
284
.
2.
D. L.
Johnson
,
J.
Koplik
, and
R.
Dashen
, “
Theory of dynamic permeability and tortuosity in fluid-saturated porous media
,”
J. Fluid. Mech.
176
,
379
402
(
1987
).
3.
D.
Lafarge
,
Materials and Acoustics Handbook
, edited by
M.
Bruneau
and
C.
Potel
(
ISTE-Wiley
,
London
,
2009
), pp.
149
202
.
4.
M. E.
Delany
and
E. N.
Bazley
, “
Acoustical properties of fibrous materials
,”
Appl. Acoust.
3
,
105
116
(
1970
).
5.
Y.
Miki
, “
Acoustical properties of porous materials. Modification of Delaney Bazeley models
,”
J. Acoust. Soc. Jpn. (E)
11
,
19
28
(
1990
).
6.
D. A.
Bies
and
C. H.
Hansen
, “
Flow resistance information for acoustical design
,”
Appl. Acoust.
13
,
357
391
(
1980
).
7.
R. L.
Brown
and
R. H.
Bolt
, “
The measurement of flow resistance of porous acoustic materials
,”
J. Acoust. Soc. Am.
13
,
337
344
(
1942
).
8.
R. W.
Leonard
, “
Simplified flow resistance measurements
,”
J. Acoust. Soc. Am.
17
,
240
241
(
1946
).
9.
M. R.
Stinson
and
G. A.
Daigle
, “
Electronic system for the measurement of flow resistance
,”
J. Acoust. Soc. Am.
83
,
2422
2428
(
1988
).
10.
ISO 9053, Acoustics-materials for acoustical applications—Determination of airflow resistance (ISO, 1991).
11.
ASTM C522, Airflow Resistance of Acoustical Materials (ASTM, 2003).
12.
K. U.
Ingard
and
T. A.
Dear
, “
Measurement of acoustic flow resistance
,”
J. Sound Vib.
103
(
4
),
567
572
(
1985
).
13.
R.
Woodcock
and
M.
Hodgson
, “
Acoustic methods for determining the effective flow resistivity of fibrous materials
,”
J. Sound Vib.
153
(
1
),
186
191
(
1992
).
14.
M.
Ren
and
F.
Jacobsen
, “
A method of measuring the dynamic flow resistance and reactance of porous materials
,”
Appl. Acoust.
39
(4),
256
276
(
1993
).
15.
M. A.
Picard
,
P.
Solana
, and
J. F.
Urchueguia
, “
A method of measuring the dynamic flow resistance and the acoustic measurement of the effective static flow resistance in stratified rockwool samples
,”
J. Sound Vib.
216
(
3
),
495
505
(
1998
).
16.
R.
Panneton
and
X.
Olny
, “
Acoustical determination of the parameters governing viscous dissipation in porous media
,”
J. Acoust. Soc. Am.
119
(
4
),
2027
2040
(
2006
).
17.
O.
Doutres
,
Y.
Salissou
,
N.
Atalla
, and
R.
Panneton
, “
Evaluation of the acoustic and nonacoustic properties of sound absorbing materials using a three-microphone impedance tube
,”
Appl. Acoust.
71
(
6
),
506
509
(
2010
).
18.
N.
Sebaa
,
Z. E. A.
Fellah
,
M.
Fellah
,
W.
Lauriks
, and
C.
Depollier
, “
Measuring flow resistivity of porous material via acoustic reflected waves
,”
J. Appl. Phys.
98
,
084901
(
2005
).
19.
Z. E. A.
Fellah
,
M.
Fellah
,
N.
Sebaa
,
W.
Lauriks
, and
C.
Depollier
, “
Measuring flow resistivity of porous materials at low frequencies range via acoustic transmitted waves
,”
J. Acoust. Soc. Am.
119
,
1926
1928
(
2006
).
20.
Z. E. A.
Fellah
,
M.
Fellah
,
F. G.
Mitri
,
N.
Sebaa
,
C.
Depollier
, and
W.
Lauriks
, “
Measuring permeability of porous materials at low frequency range via acoustic transmitted waves
,”
Rev. Sci. Instrum.
78
,
114902
(
2007
).
21.
L.
Lin
,
M. L.
Peterson
,
A. R.
Greenberg
, and
B. A.
McCool
, “
In situ measurement of permeability
,”
J. Acoust. Soc. Am.
125
(
4
),
EL123
EL128
(
2009
).
22.
R.
Dragonetti
,
C.
Ianniello
, and
A. R.
Romano
, “
Measurement of the resistivity of porous materials with an alternating air-flow method
,”
J. Acoust. Soc. Am.
129
(2),
753
764
(
2011
).
23.
J. P.
Arenas
,
R. D.
Rey
,
J.
Alba
, and
J.
Ramis
, “
Evaluation of two alternative procedures for measuring airflow resistance of sound absorbing materials
,” ICSV20, Bangkok, Thailand, July 7–11,
2013
.
24.
M. A.
Biot
, “
The theory of propagation of elastic waves in fluid-saturated porous solid. I. Low frequency range
,”
J. Acoust. Soc. Am.
28
,
168
178
(
1956
).
25.
Z. E. A.
Fellah
and
C.
Depollier
, “
Transient wave propagation in rigid porous media: A time domain approach
,”
J. Acoust. Soc. Am.
107
,
683
688
(
2000
).
26.
Z. E. A.
Fellah
,
M.
Fellah
, and
C.
Depollier
,
Modelling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices
, edited by
M. G.
Beghi
(
InTech
,
Rijeka, Croatia
,
2013
), pp.
127
160
.
27.
J. C.
Lagarias
,
J. A.
Reeds
,
M. H.
Wright
, and
P. E.
Wright
, “
Convergence properties of the Nelder-Mead Simplex method in low dimensions
,”
SIAM J. Optim.
9
(
1
),
112
147
(
1998
).
You do not currently have access to this content.